Читать книгу: «История ракетно-ядерной гонки США и СССР», страница 5

Шрифт:

Конструкции первых американских атомных бомб

Первые американские бомбы были сделаны по двум разным технологиям, которые американцы развивали параллельно и «конкурентно», – два направления привели к неравнозначным успехам, а остальные направления «провалились» из-за слишком высоких затрат или нерешённых технических проблем. Одно направление – это обогащение урана до оружейного уровня не менее 90 %. Второе – это получение изотопа плутония-239 в ядерных реакторах.

В самом первом бомбе-устройстве «Штучка», взорванном на испытании «Тринити» – «Троица» в Аламогордо 16 июля, и в такой же бомбе, но с оболочкой и собственной автономной электросистемой «Толстяк» (взорванной над Нагасаки) применяли заряд из плутония-239. Заряд шаровой формы имел массу 6,4 кг. Этот плутоний получали в ядерных ректорах вначале с природным, а затем с низко-обогащённым ураном и с замедлителями нейтронов на графите (а после и на тяжёлой воде D2О). При поглощении нейтрона ядро изотопа природного урана-239 становилось ядром плутония-239, который и выделяли из продуктов деления реактора. Циклы превращений урана-238 в плутоний-239 и цикл превращения тория-232 в ядерное горючее Уран-233 включают захват ядром атома нейтрона (n,σ) с последующим бета-распадом β, – циклы следующие (n – нейтрон, σ – поглощение, β – распад с излучением электрона):

92U238(n,σ)→ 92U239 →β93Np239→β94Pu239 – цикл Плутония-239

90Th232(n,σ)→ 90Th233→β91Pa233→β92U233 – цикл Урана-233

В США плутоний-239 производился в Хэнфорде, штат Вашингтон и Саванне, штат Джорджия.

Оружейный уран в США производили на заводе К-25 с дополнительным обогащением на каллютроне Лоуренса, пока завод К-25 не достиг выхода изотопа с требуемой концентрацией.

Мы видим, – в качестве «ядерного горючего» для реакторов и зарядов для атомных бомб необходимо получить определённые изотопы урана и плутония. Однако при определённых условиях оказалось возможным получить цепную реакцию и в природном уране, если удавалось замедлить нейтроны, увеличить их захват атомами урана-235 и произвести в реакторах плутоний для бомб.

Принципиальное доказательство возможности создания атомной бомбы было не только теоретически, но и практически получено после осуществления цепной ядерной реакции (ЦЯР) в ядерном реакторе. В США первую цепную ядерную реакцию в реакторе американские физики во главе с Энрико Ферми получили 2 декабря 1942 г. в Чикаго (установка располагалась на территории студенческого стадиона). Коллектив И. В. Курчатова добился в СССР того же результата 25 декабря 1946 года. Вы видите, – между ЦЯР и первыми испытаниями бомб 16 июля 1945 и 29 августа 1949 и у США и у СССР прошло 2 года и 7 месяцев в обоих случаях плюс 17 дней у США и плюс 27 дней у СССР. Это реальный объективный срок развития данной научной разработки, который тогда заметно уменьшить было нельзя по объективным причинам. Причём обе эти разработки велись фактически в условиях и по логике «аврала» военного времени, – с полной отдачей сил и не жалея средств.

Урановая бомба «Малыш» – «пушечная» конструктивная схема (см. [5], c. 49)


Бомбы имели разную конструкцию. В «Малыше» сжатие заряда ядерной взрывчатки из урана-235 достигалось «пушечной» схемой, – выстрелом части заряда из пушки во вторую часть, являвшуюся мишенью, которая была заключена в толстую наружную оболочку – тампер из карбида бора (отражатель нейтронов и удерживающую заряд в начальное мгновение взрыва). В «Толстяке» заряд сжимался более сильно в результате направленного взрыва внешней взрывчатки, – заряд «имплозивного» типа из «линз» взрывчатки. Без сильного сжатия заряда простым соединением частей заряда в «критическую массу» ядерного горючего взрыв не мог получиться мощным ввиду быстрого распыления ядерного заряда в начальный момент взрыва. И даже при достигнутых американцами сжатиях заряда, он делился только частично, и КПД первых ядерных бомб был на уровне КПД «паровоза» или «автомобиля – порядка 1 % в «Малыше» и до 15 % в «Толстяке», а в более совершенных конструкциях бомб его удалось повысить. Примерно таким же невысоким был и КПД первых крупных баллистических ракет!

На рисунке бомбы «Малыш» красные части заряда – это «мишень» и «снаряд» внутреннего ствола гладкоствольной пушки с длиной ствола 1,8 м, калибром 164 мм. Заряд кордитного пороха 3.5 кг разгонял подвижную часть ядерного заряда в 38,5 кг в виде трубы из колец оружейного урана-235 до скорости 300 м/с. Неподвижная часть заряда в виде мишени-цилиндра из колец с меньшим диаметром, входившими во внутреннюю часть подвижного заряда, имела 25,6 кг урана-235. Общая масса заряда 64,1 кг превышала критическую. Вокруг неподвижной части располагался отражатель нейтронов и «держатель заряда» (тампер – замедлитель) с зазором 59 мм. Инициатор нейтронов выполнили из Бериллия и Полония-210. Полураспад Полония-210 всего 138 суток, поэтому при длительном хранении атомных бомб его надо или заменять, или хранить отдельно и вставлять только перед использованием бомбы. Это – «быстропортящийся» и весьма дорогой элемент, который нуждался в периодическом обновлении. Позже для источников нейтронов бомб стали применять другие вещества, например, на основе дейтеридов и третидов урана (см.[40], с. 180).

При быстром соединении частей заряда происходило его уплотнение и происходил взрыв. При этом распадалось около 0,7 кг урана – около 1 %. Остальная часть распылялась без распада. Дефект массы при взрыве составлял 600 мГ – энергетически от 13 до 18 кТ ТЭ. Масса бомбы 4400 кг, длина 3 м, диаметр 71 см. Взрыв произведён на высоте 576 м над землёй. Потери в Хиросиме (начальные и окончательные): 90–166 тыс. человек.

Примечание. В известном фильме «Девять дней одного года» отец спрашивает Гусева: «Ты «бомбу» делал?» И тот отвечает: «Делал, Батя. А если бы не делал, – так не было бы у нас этого разговора. И половины человечества в придачу…». А в другом фрагменте Гусев сообщает жене, что у него уже был случай, когда он «схватил» изрядную долю радиации. Когда делал эксперимент по определению критической массы «жидкого урана». А почему «жидкого»? Да потому, что в условиях сильного сжатия и высоких температур при инициализации ядерного взрыва металл заряда не может быть в твёрдом состоянии – он жидкий… Конечно, эта фраза – из художественного кинофильма, но в ней есть объективный физический смысл. Таких фраз в фильме немало. Это очень глубокий фильм, – смысл некоторых фраз из него дошёл до нас спустя много лет после первого просмотра ещё в детстве. В частности, слова Гусева дают ответ на вопрос, зачем нужны были огромные затраты на создание ЯО, и за что советские учёные-физики отдавали своё здоровье и свои жизни.

Для «Толстяка» пушечная схема оказалась непригодной. Наличие в плутонии значительных долей изотопа-240 делало процесс активации взрыва по «пушечной схеме» очень нестабильным. Плутоний-240 испускал много нейтронов, которые вызывали преждевременную реакцию заряда с его распылением до достижения необходимой критической массы и, как следствие, – неэффективный взрыв заряда с малой мощностью – «хлопо́к»). «Пушечная схема» оказалась для плутониевой бомбы неприемлемой, поскольку требовала примерно в 100 раз большей скорости соединения зарядов в критическую массу для достижения требуемых параметров инициации заряда. Очистить же плутоний-239 от изотопа-240 было заметно сложнее, чем уран-235 от урана-238 из-за малой разницы в весе атомов этой пары изотопов (240–239=1, а 238–235=3).

Для инициирования плутониевого заряда и перевода его в критическое состояние требовалось сжать его со всех сторон с очень большой силой, с давлением в тысячи атмосфер, причём с очень большой – космической скоростью. Это можно выполнить только с помощью мощного взрывчатого вещества со скоростью горения 7–8 км в с. Привлечённая к этой работе группа Сета Неддельмейера из артиллерийско-технического отдела Пентагона столкнулась с большими трудностями: следовало создать сферическую волну взрыва, направленную не только наружу, но и внутрь для сжатия заряда. Путь для решения проблемы предложил Джеймс Так – английский физик из Манчестера, изучавший кумулятивные эффекты и прибывший в США вместе с другими британскими учёными. В мае 1944 года своё мнение, подкреплённое расчётами, высказал и ведущий британский специалист по гидродинамике Джеффри Тейлор. На основе заключений этих специалистов физики Лос-Аламоса пришли к выводу, что единственно правильным решением будет создание системы «взрывных линз», создающих сферическую волну, направленную внутрь. Оппенгеймер создал два отдела для решения проблемы: отдел «G» («gadget» – устройство), продолжавший разработку бомбы «Толстяк» и отдел «Х» (Explosives – сжатие).

Во главе отдела «Х» Оппенгеймер поставил американского физика русского происхождения Георгия Кистяковского. Скоро в этот отдел входило около 600 специалистов, в том числе 400 физиков и инженеров. Они провели сотни опытов с взрывами, тщательно отрабатывая конструкцию по результатам многочисленных своих измерений и расчётов. Сложный заряд имел три слоя из «быстрой» и «медленной» (внутренний слой) взрывчатки и составлялся из 32-х сегментов взрывчатки, которые складывались в сферу, окружавшую пушер – наружную часть заряда плутония. Схема конструкции бомбы «Толстяк» приведена на рисунке. Благодаря взрыву наружных слоёв взрывчатки, они удерживали взрыв внутреннего слоя так, что в его центре, создавались очень высокие температура и давления в центре, сжимавшие расположенный здесь заряд.


Бомба «Толстяк» (MARK-III) – конструктивная схема «имплозивного типа» с линзами взрывчатки (см. [5], c. 54).


Термин «имплозия» применяется для взрывных процессов со сжатием внутренней зоны в начальный момент взрыва. В отличие от «эксплозии», – взрыва с расширением фронта из центральной точки инициируемого заряда. При «имплозии» происходит детонация взрыва по поверхности, на которой находятся инициирующие заряды для подрыва, – при этом волна взрыва распространяется от этой поверхности и внутрь заряда с его сжатием, и вне заряда с его расширением. В результате сжатия внутреннего заряда ядро из плутония сжимается до плотности, примерно в 2 раза большей, чем в начальном состоянии (15,6 г/см3), и это сжатие вызывает уменьшение критической массы заряда в 4 раза. В результате заряд становится «надкритическим» и взрывается от возникшей в нём цепной реакции деления. Реакцию убыстряет и усиливает ядерный инициатор – мощный источник нейтронов («Урчин»), который тоже срабатывает при сильном сжатии заряда.

В центре красного заряда Плутония-239 на рисунке «Толстяка» виден источник нейтронов – инициатор. А снаружи – плотная оболочка из отражателя нейтронов, сжимаемая снаружи зарядами из обычной взрывчатки, снабжёнными синхронными электродетонаторами по всей наружной поверхности сферы в центрах сферических шестиугольников. Система подрыва резервирована и содержит несколько ступеней безопасности, которые надо «снять» на носителе перед сбросом бомбы.

Для эффективного начала цепной реакции внутри заряда (на рисунке – красного цвета) из двух полушарий Плутония-239 помещали инициатор «Урчин» (Urchin – «Ёжик») – источник нейтронов. Источники нейтронов обычно изготавливали из бериллия и изотопов тяжёлых металлов, самораспадающихся с «альфа-распадом», – полония-210, плутония, кюрия, калифорния, актиния. Альфа-частица (быстро летящий ион атома гелия) при соединении с бериллием Ве превращалась в ядро углерода С с выходом нейтрона n (нижний индекс – атомный номер, а верхний – атомный вес – в формуле они сбалансированы):


24α(Не) + 49Ве →612С + 01n


В бомбе «Толстяк» инициатор состоял из полого бериллиевого шарика диаметром 2 см и толщиной 0,6 см, на внутренней поверхности которого имелось 15 клиновых выемок (щелей глубиной 2,09 мм). Плоскости всех выемок параллельны одна другой. Поверхность выемок покрыта слоем золота толщиной 0,1 мм и слоем радиоактивного полония-210 (11 мг). Внутри этого шара помещен сплошной бериллиевый шарик (0,8 см), поверхность которого также покрыта слоем золота и полония (см http://pratom.ru/bomba/atom_littleboy-fatman3.htm https://biography.wikireading.ru/4216). В обычном состоянии поток альфа-частиц, испускаемый полонием, поглощался слоем золота и не испускал сильного потока нейтронов (который мог вызвать раннюю инициацию до сжатия заряда). Но при общем сжатии заряда слои золота разрушались, и инициатор «вспыхивал» потоком нейтронов в 95 миллионов частиц в секунду, вызывавшим цепную реакцию деления. Нейтроны имеют хорошую проникающую способность (много большую, чем альфа-частицы) и большую скорость – они легко покидают источник и вызывают реакции деления урана или плутония. Уран и Плутоний сами распадались спонтанно (самопроизвольно) с образованием нейтронов, но наличие мощного дополнительного источника – инициатора нейтронов и внешнего отражателя нейтронов позволяло резко ускорить цепной процесс ядерного распада в самый начальный момент.

Заряд плутония «Толстяка» сделан из сплава плутония с галлием (до 3,5 молярных % или до 1 весового % галлия) в кристаллической дельта-фазе, – менее плотной, чем альфа фаза плутония, которая более плотная, но менее сжимаемая и хрупкая при обработке. В дельта-фазу ядро формовали специальной термической обработкой при охлаждении из жидкого состояния при кристаллизации металла, – в такой фазе металл не был хрупким и допускал поверхностную чистовую обработку. Сам заряд плутония помещался в цилиндр из природного урана – замедлитель и отражатель нейтронов (tamper – тампер – оболочка для уменьшения критической массы благодаря дополнительному потоку нейтронов), а цилиндр – в сферу из сплава алюминия – pusher («пушер» – толкатель, – оболочка, передающая усилие сжатия на заряд). Каналы для закладки заряда внутрь тампера и пушера закрывались пробками из урана и сплава алюминия. Снаружи располагались 32 сектора из взрывчатки, причём каждый сектор содержал внешний и внутренний слои из «быстрой взрывчатки» и средний слой из «медленной» взрывчатки». Внутренняя, обращенная к центру поверхность брусков взрывчатки – сферическая с диаметром, равным наружному диаметру слоя алюминия. В наружной поверхности брусков ВВ имеются специальные выемки, форма которых предусматривает помещение в них 20 линз гексагональной и 12 линз пентагональной формы. Между перпендикулярными к оси шара поверхностями ВВ и линз кладется прокладка из фетра толщиной 1 /16 дюйма, а пустоты между радиальными поверхностями соприкосновения заполняются промокательной бумагой. Воздушные промежутки между слоем ВВ и линзами не должны превышать 1/32 дюйма, так как большие воздушные промежутки могут способствовать замедлению или же, наоборот, ускорению детонации в зависимости от направления этих промежутков. Линзы отливаются в специальных формах, изготовленных из ацетата целлюлозы. Каждая линза состоит из двух типов ВВ, одного – быстро взрывающегося и другого – медленно взрывающегося. При установке линз на место быстро взрывающаяся часть ее соприкасается со слоем медленно взрывающегося ВВ. Общий вес взрывчатого вещества около 2 тонн (см. [113, c. 96). К каждой линзе подведен один детонатор, который для большей гарантии одновременного взрыва имеет два электрозапала. Наружный слой ВВ покрыты дюралюминиевой оболочкой, к которой крепится подрывное устройство весом 180 кг. Внутренний диаметр оболочки примерно 1400 мм, вес вместе с подрывным устройством около 700 кг. Наружная оболочка сделана из бронированной стали и снабжена стабилизатором – они обеспечивают прочную аэродинамическую форму бомбы.

При синхронном подрыве 32-мя детонаторами происходил подрыв взрывчатки, который сжимал заряд плутония и инициатор, переводя заряд в критическое состояние и вызывая ядерный взрыв. Разделиться до распыления заряда успевало около 15 % заряда плутония массой 6,4 кг – около 0,975 кг плутония-239. Масса бомбы 4700 кг, длина 3,25 м, диаметр 1,52 м.

В современных самых лучших конструкциях ядерных зарядов, удерживающих исходную форму достаточно долго, чуть более чем полмикросекунды, успевают пройти приблизительно 55–57 звеньев цепной реакции, что позволяет прореагировать до 45–50 % и даже чуть более – до 51–53 % плутония. Остальной плутоний рассеивается в окружающую среду, а это очень токсичный металл (см. [40], с. 96).

Бомбу сбросили на парашюте и подорвали над Нагасаки на высоте около 500 м. Потери в Нагасаки (начальные и окончательные): 60–80 тыс. человек. В качестве целей для атомной бомбардировки американские военные выбрали наименее пострадавшие от войны японские города. Столица Токио для этой роли не годилась: тремя бомбардировками 23 февраля, 10 марта и 26 мая 1945 г. город был сожжён «до тла».

Из книги Л. Гровса [23] ясно, что взрывы ядерных бомб над Хиросимой и Нагасаки производились в крайней спешке. Военные и политики спешили, чтобы и испытать их, и этими испытаниями оказать политическое давление в виде «устрашения» оппонентов по политическим диалогам. Вторую бомбу торопились взорвать 9 августа до капитуляции Японии, которая могла произойти в любой момент и ввиду неблагоприятного прогноза погоды на следующие 5 суток. Из-за неважной погоды самолёт-носитель отклонился от закрытой облаками плановой цели – города Кокура, вышел на Нагасаки и сбросил бомбу на запасную цель, используя просвет в облаках. Самолёт выпустили в полёт с неисправным бензопроводом одного из топливных баков – из-за этого 3 тонны топлива были недоступны, а самолёт отягощён лишним грузом. На обратном пути ему едва хватило топлива, причём для возврата не на исходную базу острова Тиниан, а на расположенный ближе остров Окинава, где их не ждали. Для разрешения на посадку, которое ему не давали (а на второй заход уже не оставалось топлива) с борта пришлось послать отчаянное сообщение: «На борту убитые и раненые». После этого им быстро расчистили нужную полосу и воздушную зону для посадки. Когда самолёт приземлился, у него кончилось топливо, и он сам не смог вырулить на площадку стоянки, – его оттащили буксиром. А на вопрос врача из примчавшейся к самолёту санитарной машины: «Где ваши убитые и раненые?», один из пилотов устало ответил: «Остались там, в Нагасаки…».

Ядерный гриб возникает из-за движения воздуха к области низкого давления в центре взрыва, возникшего после расширения огненного шара.


Первый испытательный ядерный взрыв в Аламогордо (штат Нью-Мексико) устройства и полигона «Тринити» 16.07.1945 г.


Взрыв атомной бомбы «Малыш» над Хиросимой 06.08.1945 г.


Конструкции первых атомных бомб никак не отличались совершенством, особенно в части обслуживания, длительного хранения и безопасности. К примеру, в бомбе «Толстяк» быстро разряжался питающие её цепи кислотный аккумулятор, а для его зарядки или замены приходилось частично разбирать конструкцию бомбы. Бомба «Малыш» таила опасность несанкционированного подрыва порохового заряда и опасность взрыва при случайном падении на землю или на воду. Отдельные недостатки конструкций бомб проявились позже, – когда при катастрофах бомбардировщиков при падениях бомб происходила детонация взрывчатки, вызывавшая разрушении заряда с распылением радиоактивных веществ.


Атомный «гриб» над Нагасаки после взрыва ядерной бомбы «Толстяк» 09.08.1945 г. Перепады давления и поток частиц, создающих центры конденсации, как в камере Вильсона, создаёт облако пара, к которому снизу поднимается столб пыли и пепла.


Отдельные эксперименты с ураном и плохо известными свойствами взаимодействующих материалов представляли смертельную опасность. Одна из реакторных сборок немецких физиков взорвалась из-за взаимодействия порошкообразного урана с водой и выделения водорода. Но особенно опасными были эксперименты с обогащённым ураном и плутонием при их массе, близкой к критической. Таковы эксперименты Фриша с обогащённым ураном, поступавшем с завода К-25 на установке «Леди Годива» со сборкой из гидрида урана. В которой массу вещества приближали к критической: при них Фриш получал опасные дозы облучения. Опасным был эксперимент с «проскакиванием» ядра из обогащённого гидрида урана через канал в сборке аналогичного вещества для более точного определения критической массы урана. При быстром «проскакивании» резко повышалась мощность ядерной реакции с заметным выделением тепла скачком радиации. Такой эксперимент назвали «дёрганием дракона за хвост», – «драконьим» экспериментом или «Драконом». Максимальный показатель выделения энергии составил 12 миллионов ватт; выброс, длившийся в течение всего лишь трех тысячных долей секунды, увеличил температуру сборки на 6°C. Это был первый опыт изучения сверхкритической массы урана в лабораторных условиях. При опытах с зарядами ядерных бомб в США произошло не менее 7 случаев со смертельным исходом для экспериментаторов.


Опасные манипуляции с частями ядерного заряда


21 августа 1945 г. ужасную смерть от лучевой болезни довелось наблюдать прямо в Лос-Аламосе. Двадцатичетырехлетний физик Гарри Даглиан допоздна в одиночку работал над вариантом эксперимента «Дракон», в котором в качестве отражателя нейтронов использовались блоки из карбида вольфрама, окружавшие шестикилограммовое ядро плутониевой бомбы. Когда Гарри положил на место последний отражающий блок, тот соскользнул и упал в центр. Теперь ядро подверглось воздействию дополнительных нейтронов, отраженных этим блоком, и сразу же стало субкритическим. Лабораторию охватило голубое сияние ионизированного воздуха, аппарат изверг смертельную дозу радиации. Даглиан получил ожоги рук и груди третьей степени. Затем ожоги покрылись пузырями, волосы Гарри выпали, и у него началась лихорадка. Через 26 дней после несчастного случая молодой человек умер (см. [24], c. 200). Но неосторожные эксперименты с этой сборкой на этом не закончились. 21 мая 1946 г. физик Луи Слотин продемонстрировал в каньоне Парахито нескольким коллегам по Лос-Аламосу критическую сборку с тем же плутониевым ядром, которое погубило Даглиана. Проводя эксперимент, Слотин отделял друг от друга две полусферы бериллиевого отражателя нейтронов кончиком отвертки. Это был необычный эксперимент, и Слотин, который участвовал в сборке ядра для испытания «Тринити» и вообще был опытным исследователем, должен был знать, что делает. Отвертка соскользнула, и сборка немедленно стала субкритической. Слотин получил смертельную дозу радиации. Он смог сдвинуть верхнюю полусферу со сборки и таким образом спас жизни своим товарищам. Слотин умер через девять дней, 30 мая (см. [2], c. 236). С подобной опасной вспышки радиации при опасном эксперименте начинается и художественный сюжет фильма «Девять дней одного года».

Позже случались похожие инциденты и у советских физиков. Однажды Ю. Б. Харитон, осматривая снизу одну из полусфер плутония, направил голову в пространство между полусферами – вещество головы (в первую очередь, вода), сработало, как замедлитель нейтронов и вызвало усиление реакции и излучения между сферами. В результате нейтронной вспышки, Харитон Ю. Б. серьёзно повредил зрение, – в последние годы жизни он полностью ослеп. Соединение полусфер плутония даже в докритическом состоянии и помещение между ними и вокруг них каких-то предметов было смертельно опасно из-за возможных вспышек жёсткого излучения из частиц (нейтронов, электронов, альфа частиц и других осколков ядер) и фотонов разных энергий (гамма, рентгеновских, УФ, ИКИ и т. п.).

17.07.1978 года имел место случай, когда из-за плохой согласованности действий на синхротроне У-70 в Протвине мощный пучок нейтронов прошёл через голову физика А. П. Бугорского, – налицо были входное и выходное отверстия потока. Физик получил травму мозга, – его спасло только то, что пучок был очень тонкий, и смертельная доза облучения была сконцентрирована в узкой зоне. Травма была серьёзной (но не фатальной), она потребовала длительного лечения и имела последствия для здоровья. (https://myhistory.mirtesen.ru/blog/43309909552/-YArche-tyisyachi-solnts-neveroyatnaya-istoriya-sovetskogo-fizik?utm_referrer=mirtesen.ru&utm_campaign=transit&utm_source=main&utm_medium=page_0&domain=mirtesen.ru&paid=1&pad=1)

Таким образом, главнейшая задача при создании ядерного оружия состояла в производстве и низко обогащённого U-235, и высокообогащённого оружейного U-235. В разделении этих изотопов в промышленных масштабах и в производстве плутония 239 в реакторах состояли главные технические проблемы при производстве ядерного оружия в больших масштабах. Первые бомбы создали вначале на небольших мощностях лабораторных и реакторных для плутония установках. Для изготовления значительного числа атомных бомб необходимо было создать огромные мощности обогатительных заводов по переработке урана и с крупными реакторными установками, производящими плутоний.

Критическая масса для обогащенного от 90 до 93,5 % по изотопу урана U-235 для открытого шара – менее 50 кг; для шара с отражателем нейтронов – 15–23 кг (такой шар имеет диаметр всего около 13 см), для водного раствора урана – менее одного килограмма (для реакторных установок с замедлителем из воды).

Критическая масса для открытого шара из плутония-239 – 5–6 кг, для шара с отражателем – около 1 кг. Применение замедлителей нейтронов и специальной оболочки, которая отражает нейтроны, позволяет снизить критическую массу до 250 г (https://studfiles.net/preview/4421425/page:3/). Некоторые вещества, например, бериллий, природный уран, карбид бора имеют высокие «альбедные» характеристики – способность отражать нейтроны и их используют в качестве оболочек для ядерных зарядов.



Для получения одного килограмма высокообогащенного урана (то есть урана, содержащего более 90 % U-235) требуется более 193 ЕРР (единиц разделительной работы – это работа для обогащения 1 кг природного урана до концентрации U-235 до 3 % – характеристика ЕРР измеряется в килограммах). И требуется почти 219 килограммов природного урана при условии, что в обедненном уране не останется 0,3 % U-235. Если допустимая доля U235 в обедненном уране составит 0,2 %, потребуется почти 228 ЕРР и более 176 килограмм природного урана.

Немного позже оружейные уран и плутоний стали использоваться и как «запалы» для водородных бомб, – взрыв их специальных зарядов вызывал реакцию синтеза, – т. е. слияния лёгких элементов с выделением ещё большей энергии, чем при взрыве ядерных бомб. При взрыве ядерных бомб мощность заряда была ограничена критической массой урана и плутония и КПД бомбы. А вот при взрыве термоядерных зарядов количество взрывчатки можно было сделать много большим, чем при взрыве «обычных» ядерных бомб. Соответственно увеличивалась и мощность взрыва. Конструкции зарядов были достаточно сложными, – для их создания потребовались новые идеи, новые методы сложных расчётов и новые методы экспериментальных исследований с сотнями ядерных взрывов. При создании новых зарядов с целью увеличения мощности взрыва применяли бустирование, – процесс использования термоядерного вещества в ядерной бомбе с повышением эффективности процесса деления. Т. е. использовали совместно ядерное деление и термоядерный синтез.

399
569 ₽
Возрастное ограничение:
16+
Дата выхода на Литрес:
01 марта 2021
Дата написания:
2021
Объем:
993 стр. 439 иллюстраций
ISBN:
978-5-00180-066-8
Правообладатель:
Алисторус
Формат скачивания:
epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip

С этой книгой читают