Читать книгу: «Увлекательно о космосе. Межпланетные путешествия», страница 2

Шрифт:

Глава 3
Можно ли укрыться от силы тяжести?

С детства привыкли мы к тому, что все вещи прикованы своим весом к Земле; нам трудно поэтому даже мысленно отрешиться от тяжести и представить себе картину того, что было бы, если бы мы умели эту силу уничтожать по своему желанию. Такую фантастическую картину нарисовал в одной из своих статей американский ученый Г. Сервис:

Если бы в самый разгар военной кампании мы могли посылать волны, которые нейтрализовали бы силу тяжести, то всюду, куда бы они ни попадали, немедленно наступал бы хаос. Гигантские пушки взлетали бы на воздух, как мыльные пузыри. Марширующие солдаты, внезапно почувствовав себя легче перышка, беспомощно витали бы в воздухе, всецело во власти неприятеля, находящегося вне сферы действия этих волн. Картина забавная и, как может показаться, невероятная, а между тем так было бы в действительности, если бы людям удалось подчинить своей власти силу тяжести.

Все это, конечно, фантазия. Не приходится и думать о том, чтобы распоряжаться силою тяготения по своему желанию. Мы не в состоянии даже сколько-нибудь отклонить эту силу от пути, по которому она действует, не можем ни одного тела защитить от ее действия. Тяготение – единственная сила природы, для которой не существует преград. Какое бы огромное, какое бы плотное тело ни стояло на ее пути, сила эта проникает сквозь него, как через пустое место. Тел для тяготения непроницаемых – сколько нам известно – в природе нет.

Рис. 6. Опыт с легким и свинцовым шариками доказывает, что на все в мире действует сила тяжести


Но если бы человеческому гению посчастливилось в будущем отыскать или приготовить такое непроницаемое для тяготения вещество, смогли ли бы мы с его помощью укрыться от силы притяжения, сбросить цепи тяжести и свободно ринуться в мировое пространство?

Английский писатель Герберт Уэллс подробно развил мысль о заслоне от тяготения в фантастическом романе «Первые люди на Луне»3. Ученый – герой романа, изобретатель Кевор, открыл способ изготовления именно такого вещества, непроницаемого для тяготения. Об этом фантастическом веществе, названном в романе «кеворит», автор рассуждает так:

Почти каждое тело отличается непрозрачностью для какого-нибудь рода лучистой энергии и прозрачно для других ее видов. Стекло, например, пропускает видимый свет, но для невидимых лучей, производящих нагревание, оно гораздо менее прозрачно; квасцы, прозрачные для видимых лучей света, полностью задерживают лучи невидимые, нагревающие. Напротив, раствор йода в жидкости, называемой сероуглеродом, непрозрачен для видимых лучей света, но свободно пропускает невидимые, греющие лучи: через сосуд с такой жидкостью не видно пламени, но хорошо ощущается его теплота. Металлы непрозрачны не только для лучей света, видимого и невидимого, но и для электрических колебаний, которые, однако, свободно проходят сквозь стекло или через упомянутый раствор, как сквозь пустое пространство, и т. д.

Далее. Мы знаем, что для всемирного тяготения, то есть для силы тяжести, проницаемы все тела. Вы можете поставить преграды, чтобы отрезать лучам света доступ к предметам; с помощью металлических листов можете оградить предмет от доступа радиоволн, – но никакими преградами не можете вы защитить предмет от действия тяготения Солнца или от силы земной тяжести. Почему, собственно, в природе нет подобных преград для тяготения – трудно сказать. Однако Кевор не видел причин, почему бы и не существовать такому веществу, непроницаемому для тяготения; он считал себя способным искусственно создать такое непроницаемое для тяготения вещество.

Всякий, обладающий хоть искрой воображения, легко представит себе, какие необычайные возможности открывает перед нами подобное вещество. Если, например, нужно поднять груз, то, как бы огромен он ни был, достаточно будет разостлать под ним лист из этого вещества – и груз можно будет поднять хоть соломинкой.

Располагая столь замечательным веществом, герои романа сооружают небесный дирижабль, в котором и совершают смелый перелет на Луну. Устройство снаряда весьма несложно: в нем нет никакого двигательного механизма, так как он перемещается действием внешних сил. Вот описание этого фантастического аппарата:

Вообразите себе шарообразный снаряд, достаточно просторный, чтобы вместить двух человек с их багажом. Снаряд будет иметь две оболочки – внутреннюю и наружную; внутренняя – из толстого стекла, наружная – стальная. Можно взять с собою запас сгущенного воздуха, концентрированной пищи, аппараты для дистилляции воды и т. п. Стальной шар будет снаружи весь покрыт слоем кеворита. Внутренняя стеклянная оболочка будет сплошная, кроме люка; стальная же будет состоять из отдельных частей, и каждая такая часть может сворачиваться, как штора. Когда все шторы наглухо спущены, внутрь шара не может проникнуть ни свет, ни какой вообще вид лучистой энергии, ни сила всемирного тяготения. Но вообразите, что одна из штор поднята; тогда любое массивное тело, которое случайно находится вдали против этого окна, притянет нас к себе. Практически мы можем путешествовать в мировом пространстве в том направлении, в каком пожелаем, притягиваемые то одним, то другим небесным телом.

Интересно описан в романе момент отправления аппарата в путь. Слой «кеворита», покрывающий аппарат, делает его совершенно невесомым. Невесомое тело не может спокойно лежать на дне воздушного океана; с ним должно произойти то же, что происходит с пробкой, погруженной на дно озера: она всплывает на поверхность воды. Точно так же невесомый аппарат должен стремительно подняться ввысь и, миновав крайние границы атмосферы, умчаться по инерции в мировое пространство. Герои романа Уэллса так и полетели. А очутившись далеко за пределами атмосферы, они, открывая одни заслонки, закрывая другие, подвергая свой снаряд притяжению то Солнца, то Земли, то Луны, добрались наконец до поверхности нашего спутника. Впоследствии таким же путем аппарат благополучно возвратился на Землю.

Описанный проект космических перелетов кажется на первый взгляд настолько правдоподобным, что естественно возникает мысль: не в этом ли направлении следует искать разрешение задачи звездоплавания? Нельзя ли, в самом деле, найти или изобрести вещество, непроницаемое для тяготения, и, пользуясь им, устроить межпланетный корабль?

Достаточно, однако, глубже вдуматься в эту идею, чтобы убедиться в полной ее несостоятельности.

Не говоря уже о том, как мало у нас надежды отыскать вещество, заслоняющее от тяготения. Ведь последние элементарные частицы, электроны и протоны, из которых построены все виды материи, обладают весомостью и проницаемы для тяготения. Немыслимо представить себе, чтобы какое-нибудь их сочетание могло обладать иными свойствами в этом отношении.


Рис. 7. Аналогия тяготения по воззрениям Эйнштейна


Современное4 представление о сущности тяготения (учение А. Эйнштейна) рассматривает его вовсе не как силу природы, а как своеобразное воздействие материи на форму окружающего пространства: пространство в соседстве с материей приобретает кривизну. Уяснить себе это крайне необычное воззрение можно отчасти с помощью следующей аналогии. У вас имеется натянутая на обруче ткань; вы пускаете по ткани (мимо центра) легкий шарик – он покатится по прямой линии. Но вообразите, что вблизи пути легкого шарика положен на ткань крупный свинцовый шар. Он вдавит под собою ткань в виде чашки; легкий шарик, пущенный в прежнем направлении, не пронесется мимо этой чашки по прямой линии, а будет втянут вдавленностью и закружится по ее склонам вокруг свинцового шара, как планета около Солнца. Планеты – такова сущность учения Эйнштейна – обращаются вокруг Солнца не потому, что отклоняются от прямолинейного пути притягательной силой центрального светила, а потому, что пространство, окружающее Солнце, искривлено.

Читатель не должен забывать, что картина эта – всего лишь грубая аналогия, пытающаяся придать наглядность крайне отвлеченным представлениям. Как бы то ни было, современный взгляд на природу тяготения исключает возможность существования экрана, непроницаемого для действия этого фактора. Но пусть даже фантастический «кеворит» найден, пусть сооружен аппарат по идее английского романиста. Пригоден ли будет такой аппарат для межпланетных путешествий, как описано в романе? Посмотрим.

В уме читателя, вероятно, уже мелькнуло сомнение, когда романист говорил нам о возможности поднять тяжелый груз «хоть соломинкой», поместив под ним непроницаемый для тяготения экран. Ведь это значит ни более ни менее как разрешить проблему вечного двигателя, создать энергию из ничего! Вообразите, в самом деле, что мы обладаем заслоном от тяготения. Подкладываем лист «кеворита» под любой груз, поднимаем без всякой затраты энергии наш теперь уже невесомый груз на любую высоту и снова убираем экран. Груз, конечно, падает вниз и может произвести при падении некоторую работу. Повторяем эту простую операцию дважды, трижды, тысячу, миллион раз, сколько пожелаем, – и получаем произвольно большое количество энергии, ниоткуда ее не заимствуя.

Выходит, что непроницаемый для тяготения экран дает нам чудесную возможность творить энергию из ничего, так как ее появление, по-видимому, не сопровождается одновременным исчезновением равного количества энергии в другом месте или в иной форме. Если бы герой романа действительно побывал на Луне и возвратился на Землю тем способом, какой там описан, то в результате подобного путешествия мир обогатился бы энергией. Общее количество ее во Вселенной увеличилось бы настолько, сколько составляет разность работ, совершаемых силою тяготения при падении человеческого тела с Луны на Землю и с Земли на Луну. Земля притягивает сильнее, чем Луна, и, следовательно, первая работа больше второй. Пусть эта прибавка энергии ничтожна по сравнению с запасом ее во Вселенной, все же такое сотворение энергии, несомненно, противоречит закону сохранения энергии.

Если мы пришли к явному противоречию с законами природы, то, очевидно, в рассуждение вкралась не замеченная нами ошибка. Нетрудно понять, где именно надо ее искать. Идея заслона, непроницаемого для тяготения, сама по себе не заключает логической нелепости; но ошибочно думать, будто с помощью его можно сделать тело невесомым без затраты энергии. Нельзя перенести тело за экран тяготения, не производя при этом никакой работы. Невозможно задвинуть шторы «кеворитного» шара, не применяя силы. Обе операции должны сопровождаться затратой количества энергии, равного тому, которое потом является словно созданным из ничего. В этом и состоит разрешение противоречия, к которому мы пришли.

Задвигая заслонки межпланетного аппарата, герои Уэллса тем самым словно рассекали невидимую цепь притяжения, которая приковывала их к Земле. Мы знаем в точности крепость этой цепи и можем вычислить величину работы, необходимой для ее разрыва. Это та работа, которую мы совершили бы, если бы перенесли весомое тело с земной поверхности в бесконечно удаленную точку пространства, где сила земного притяжения равна нулю.

Есть люди, привыкшие относиться к слову «бесконечность» с мистическим благоговением, и упоминание этого слова нередко порождает в уме нематематика весьма превратные представления. Когда я сказал о работе, производимой телом на бесконечном пути, иные читатели, вероятно, уже решили про себя, что эта работа бесконечно велика. На самом деле она хотя и очень велика, но имеет конечную величину, которую математик может в точности вычислить. Работу перенесения весомого тела с земной поверхности в бесконечность мы можем рассматривать как сумму бесконечного ряда слагаемых, которые быстро уменьшаются, потому что с удалением от Земли сила притяжения заметно ослабевает. Сумма подобных слагаемых, хотя бы их было бесчисленное множество, нередко дает результат конечный. Сделайте шаг, потом еще полшага, затем еще 1/4 шага, еще 1/8, 1/16, 1/32 и т. д. Вы можете продвигаться так целую вечность – и все же не сделаете больше двух полных шагов. При учете работы тяготения мы имеем нечто вроде подобного суммирования, и читатель не должен удивляться, что работа эта даже на бесконечном пути имеет значение конечное. Можно вычислить, что для груза в 1 кг работа его перенесения с земной поверхности в бесконечность составляет немного более 6 000 000 кгм. Так как эта техническая оценка работы не для всех понятна, то поясню, что она равна величине работы, которую произвел бы, например, подъемный кран, подняв паровоз с тендером (75 т) на высоту 80 м. Современные океанские пароходы-исполины, с турбинами мощностью в 100 000 л. с., совершают ту же работу менее чем в одну секунду.

Далее. В смысле затраты работы совершенно безразлично, перенесете ли вы груз с Земли в бесконечно удаленную точку или же в весьма близкое место, но такое, где он вовсе не притягивается Землей. В обоих случаях вы совершили бы одинаковую работу: величина ее зависит не от длины пройденного пути, а только от разности силы притяжения в крайних точках пути. При переносе тела в бесконечность работа производится на протяжении бесконечно длинного пути; при переносе за экран тяготения та же самая работа затрачивается в те несколько мгновений, пока совершается перенос. Надо ли говорить, что вторую работу практически было бы еще труднее произвести, чем первую? Теперь становится очевидной безнадежность фантастического проекта Уэллса. Романист не подозревал, что перенесение тела за экран, непроницаемый для тяготения, представляет неимоверно трудную механическую задачу5. Задвинуть заслонки «кеворитного» снаряда не так просто, как захлопнуть дверцу автомобиля: в промежуток времени, пока закрываются заслонки и пассажиры уединяются от весомого мира, должна быть выполнена работа, равная работе перенесения пассажиров в бесконечность. А так как два человека весят свыше 100 кг, то, значит, задвигая заслонки снаряда, герои романа должны были в одну секунду совершить работу ни много ни мало в 600 000 000 кгм. Это столь же легко выполнить, как втащить сорок паровозов на вершину Эйфелевой башни в течение одной секунды. Обладая такой мощностью, мы и без «кеворита» могли бы буквально прыгнуть с Земли на Луну.

Итак, идея странствовать во Вселенной под защитою вещества, непроницаемого для тяготения, приводит к тому, что в логике называется «порочным кругом». Чтобы воспользоваться таким веществом, надо преодолеть притяжение Земли, то есть выполнять именно то, ради чего и должен быть придуман заслон тяготения. Следовательно, заслон для тяготения не разрешил бы проблемы небесных путешествий.

Глава 4
Можно ли ослабить земную тяжесть?

Если несбыточны надежды укрыться от силы тяжести, то, быть может, существуют способы хотя бы ослабить тяжесть на земной поверхности?

Казалось бы, закон тяготения не допускает подобной возможности даже в теории: сила притяжения зависит ведь от массы земного шара, уменьшить которую мы не в состоянии. Однако это не так. Речь идет о напряжении тяжести на поверхности нашей планеты, а оно, как известно, зависит не от одной лишь массы, но и от расстояния до центра земного шара, то есть от величины земного радиуса. Если бы мы могли разрыхлить земной шар настолько, чтобы, увеличившись в объеме, он приобрел радиус, например, вдвое больше, чем теперь, то напряжение тяжести на поверхности такого шара стало бы вчетверо меньше. В самом деле, находясь на поверхности Земли, мы были бы вдвое дальше от притягивающего центра (шарообразные тела притягиваются так, словно вся их масса сосредоточена в центре). Выгода от подобного переустройства обитаемой нами планеты получилась бы еще и та, что поверхность земного шара увеличилась бы в четыре раза. Людям жилось бы на Земле буквально вчетверо «свободнее» и вчетверо «легче»…

Разумеется, современная и даже будущая техника не в состоянии осуществить ничего подобного.

Механика указывает и другой путь к ослаблению земной тяжести. Он состоит в том, чтобы ускорить быстроту вращения Земли вокруг оси. Уже и теперь центробежный эффект вращения земного шара уменьшает вес каждого тела на экваторе на ½90 долю. В соединении с другой причиной (вздутием земного шара у экватора) вращение Земли действует так, что все тела на экваторе весят на 0,5 % меньше, чем близ полюсов. Паровоз, весящий в Москве 60 т, становится по прибытии в Архангельск на 60 кг тяжелее, а в Одессу – на столько же легче. Партия угля в 5000 т, доставленная со Шпицбергена в экваториальный порт, уменьшилась бы в весе на 20 т, если бы приемщику пришла фантазия принять груз, пользуясь пружинными весами, выверенными на Шпицбергене. Линкор, весящий в Архангельске 20 000 т, становится по прибытии в экваториальные воды легче на 80 т; но это, конечно, неощутительно, так как соответственно легче делаются и все другие тела, не исключая и воду в океане. Разницу веса похищает главным образом центробежный эффект: на экваторе он несколько больше, чем в удаленных от него широтах, где точки земной поверхности при вращении Земли описывают гораздо меньшие круги.

Нетрудно доказать, что если бы Земля вращалась в 17 раз быстрее, чем теперь, то центробежный эффект на экваторе увеличился бы в 17 × 17, то есть почти в 290 раз. Вспомнив, что теперь центробежный эффект похищает у тел как раз ½90 долю их веса, вы поймете, что на экваторе столь быстро вращающейся Земли тела совсем не имели бы веса. Стоило бы тогда лишь достичь экватора, чтобы, слегка оттолкнувшись там, ринуться в мировое пространство. Задача звездоплавания разрешалась бы крайне просто. А если бы Земля вращалась еще быстрее, мы сделались бы небесными странниками поневоле, так как инерция при вращении сама отбросила бы нас в бездонную глубь неба. Людям приходилось бы задумываться уже над проблемой земных, а не межпланетных странствований…

Но мы чересчур далеко забрели в область фантазии. Все сказанное лежит, конечно, за гранью достижимого. Если бы в наших силах и была возможность ускорить вращение земного шара, то, вертясь достаточно быстро, Земля расплющилась бы (в плоскости своего экватора), а быть может, даже еще ранее разлетелась бы на части, как чересчур быстро заверченный жернов. Возможность путешествовать в межзвездных пространствах приобретена была бы слишком дорогой ценой…

Глава 5
Вопреки тяжести – на волнах света

Из трех мыслимых способов борьбы с тяготением мы рассмотрели и отвергли два: способ защиты от тяготения и способ ослабления земной тяжести. Ни тот ни другой не дают надежды успешно разрешить заманчивую проблему межпланетных перелетов. Бесплодны всякие попытки укрыться от силы тяготения; безнадежно стремление ослабить напряжение тяжести. Остается одно: вступить с тяготением в борьбу, искать средство преодолеть его и покинуть нашу планету вопреки притяжению.

Проектов подобного рода существует несколько. Они, без сомнения, интереснее всех других, так как их авторы не измышляют фантастических веществ вроде «экрана тяготения», не предлагают переделать земной шар или изменить скорость его вращения.

Один из проектов рассматриваемой категории предлагает воспользоваться для межпланетных перелетов давлением световых лучей. Лицам, мало знакомым с физикой, должно казаться невероятным, что нежные лучи света оказывают давление на озаряемые ими предметы. Между тем одной из величайших заслуг нашего гениального физика П.Н. Лебедева было то, что он на опыте обнаружил и измерил отталкивающую силу лучей света.

Всякое светящееся тело, будь то свеча на вашем столе, электрическая лампа, раскаленное Солнце или даже темное тело, испускающее невидимые лучи, давит своими лучами на озаряемые тела. П.Н. Лебедеву удалось измерить силу давления, оказываемого солнечными лучами на освещаемые ими земные предметы: в мерах веса она составляет около ½ мг для площади в квадратный метр. Если умножить ½ мг на площадь большого круга земного шара, мы получим для давления солнечных лучей на Землю весьма внушительный итог: около 60 000 т.

Такова величина силы, с которой Солнце давлением своих лучей постоянно отталкивает нашу планету. Сама по себе взятая, сила эта велика. Но если сравнить ее с величиною солнечного притяжения, то окажется, что отталкивание в 60 000 т не может иметь заметного влияния на движение земного шара: сила эта в 60 биллионов раз слабее солнечного притяжения. Далекий Сириус, от которого свет странствует к нам 8 лет, притягивает Землю с гораздо большей силою – 10 000 000 т, а планета наша словно не чувствует этого. Не забудем, что 60 000 т – это вес только одного большого океанского парохода. (Вычислено, что под давлением солнечных лучей земной шар должен удаляться от Солнца на 2½ мм в год.)

Однако чем тело меньше, тем большую долю силы притяжения составляет световое давление. Вы поймете, почему это, если вспомните, что притяжение пропорционально массе тела, световое же давление пропорционально его поверхности. Уменьшите мысленно земной шар так, чтобы поперечник его стал вдвое меньше. Объем, а с ним и масса Земли уменьшается в 2 × 2 × 2 = 8 раз, поверхность же уменьшится лишь в 2 × 2 = 4 раза; значит, притяжение ослабнет в 8 раз, пропорционально уменьшению массы; световое же давление уменьшится соответственно поверхности, то есть всего лишь в 4 раза. Вы видите, что притяжение ослабело заметнее, чем световое давление. Уменьшите Землю еще вдвое – получится снова выгода в пользу светового давления.

Если будете продолжать и далее это неравное состязание кубов с квадратами, то неизбежно дойдете до таких мелких частиц, для которых световое давление наконец сравняется с притяжением. Подобная частица не будет уже приближаться к Солнцу – притяжение уничтожится равным отталкиванием. Вычислено, что для шарика плотности воды это должно иметь место в том случае, если поперечник его немного менее тысячной доли миллиметра.

Ясно, что если подобный шарик будет еще меньше, то световое отталкивание превзойдет силу притяжения и крупинка будет уже стремиться не к Солнцу, а от Солнца. Чем крупинка меньше, тем сильнее должна она отталкиваться от Солнца. Перевес светового давления над тяготением, конечно, выражается ничтожной величиной, но ведь и ничтожность относительна. Масса пылинки, которую эта сила движет, также чрезвычайно мала; и мы не должны удивляться тому, что маленькая сила сообщает весьма маленькой массе огромную скорость – в десятки, сотни и тысячи километров в секунду…6

Как читатель узнает позже, достаточно сообщить телу секундную скорость около 11 км, чтобы отослать его с земной поверхности в мировое пространство, а при начальной скорости в 17 км/с тело сможет свободно странствовать по планетной системе. Значит, если ничтожная земная пылинка очутится почему-либо за пределами атмосферы, она будет подхвачена там световым давлением и увлечется им в мировое пространство, навсегда покинув породившую ее Землю. Она будет мчаться с возрастающей скоростью все далее и далее к окраинам нашей планетной системы, пересекая орбиты Марса, астероидов, Юпитера, и через каких-нибудь полторы декады будет уже у крайней границы нашей Солнечной системы.

Два американских ученых Никольс и Гулл, изучавшие световое давление одновременно с П.Н. Лебедевым, произвели следующий чрезвычайно поучительный опыт. В абсолютно пустую стеклянную трубку, имеющую перехват, как в песочных часах (рис. 8), они насыпали смесь прокаленных грибных спор и наждачного порошка. Прокаленные и, следовательно, превращенные в уголь споры необычайно малы и легки; они имеют не более 0,002 мм в поперечнике и в 10 раз легче воды. Поэтому если направить на них сильный свет, сосредоточенный с помощью зажигательного стекла7, то можно ожидать, что пылинки будут отталкиваться световыми лучами. Так и происходило в опыте: когда смесь пересыпалась сквозь шейку перехвата, то направленный сюда свет (вольтовой дуги) отталкивал угольные пылинки, между тем как более тяжелые частицы наждачного порошка падали отвесно.

Загадочная особенность кометных хвостов, словно отталкиваемых Солнцем, по всей вероятности, объясняется именно лучевым давлением.


Рис. 8. Опыт Никольса и Гулла, обнаруживающий давление световых лучей


Об этом догадывался гениальный Кеплер, законодатель планетной системы, писавший три века назад следующие строки в своем трактате о кометах:

«По натуре всех вещей полагаю, что когда материя в пространстве Вселенной извержена бывает и сия пропускающая свет голова кометы прямыми лучами Солнца ударяется и пронизывается, то из внутренней материи кометы нечто им следует и тою же дорогою исходит, которой солнечные лучи пробивают и тело кометы освещают… Указание на причину, что из материи кометного тела нечто непрерывно изгоняется солнечными лучами силою оных, подал мне хвост кометы, о коем известно, что он всегда удаляется в сторону, противоположную Солнцу, и лучами Солнца формируется… Итак, нимало не сомневайся, читатель, что хвосты комет образуются Солнцем из материи, из головы изгнанной».


Рис. 9. Фантастическое путешествие давлением световых лучей


Не может ли и человек воспользоваться тою же силою для межпланетных путешествий? Для этого не надо было бы непременно уменьшаться до микроскопических размеров; достаточно устроить аппарат с таким же выгодным отношением поверхности и массы, как у мельчайших пылинок, отталкиваемых лучами Солнца. Другими словами, поверхность аппарата должна быть во столько же раз больше поверхности пылинки, во сколько раз вес снаряда больше веса этой пылинки.

Автор одного астрономического романа перенес своих героев на другие планеты именно в подобном аппарате. Его герои соорудили каюту из легчайшего материала, снабженную огромным, но легким зеркалом, которое можно было поворачивать наподобие паруса. Помещая зеркало под различными углами к солнечным лучам, пассажиры небесного корабля, смотря по желанию, либо ослабляли отталкивающее действие света, либо же сводили его на нет, всецело отдаваясь притягательной силе. Они плавали взад и вперед по океану Вселенной, посещая одну планету за другой. В романе все выходит правдоподобно и заманчиво. Но точный расчет разрушает эту мечту, не оставляя надежды на осуществление подобного проекта. Ведь зеркало площадью в 1 кв. м должно обладать массою не менее килограмма; мы хотим, чтобы под действием светового давления оно приобрело скорость, дающую ему возможность свободно странствовать в Солнечной системе, то есть – как узнаем далее – 17 км/с. Легко рассчитать, что такая скорость может накопиться под действием светового давления только в… 130 лет!

Правда, изготовив зеркало из легчайшего металла – лития, при толщине 0,1 мм, мы имели бы на квадратный метр его массу только в 50 г. Срок накопления космической скорости для такого зеркала (но не для увлекаемого им аппарата!) сокращается в 20 раз. Практически это, однако, не меняет дела: ясно, что при подобных темпах изменения скорости маневрирование космическим кораблем невозможно. К тому же не надо упускать из виду, что световое давление должно двигать, кроме зеркала, также и весь соединенный с ним аппарат, пассажиров и груз.

Использовать световое давление можно было бы, пожалуй, лишь для перемещения так называемой внеземной станции, о которой речь будет у нас впереди (см. далее главу «Искусственная луна. Внеземная станция»).

Столь же безнадежно обстоит вопрос с проектом применить для этой цели радиоволны, посылаемые с Земли в мировое пространство. Во-первых, за внешние пределы земной атмосферы может пробиться в лучшем случае только незначительная часть посылаемых электромагнитных лучей (см. Приложение 11). Если для движения звездолета оказывается недостаточной механическая энергия солнечного излучения, то что сказать об излучении земных радиостанций? Что же касается управления межпланетным кораблем по радио, то и об этом тоже говорить не приходится, потому что такое управление возможно было бы лишь в случае, если бы корабль имел в себе механизм для движения в безвоздушном пространстве, а в этом ведь и вся задача.

3.Подлинник появился в 1901 г. Имеется несколько русских переводов.
4.Современное для периода 1930-х гг. (Примеч. ред.)
5.На этот давно обнаруженный мной недосмотр в рассуждениях Уэллса я имел возможность обратить внимание писателя лишь в 1934 г., при его посещении СССР.
6.«Однако закон обратной пропорциональности радиусу не имеет больше силы, когда радиус становится слишком малым в сравнении с длиной волны отталкивающих световых лучей: при некотором радиусе, близком к 0,0001 мм, отношение давления к притяжению начинает быстро уменьшаться» (Пойнтинг).
7.Сосредоточенный пучок лучей, естественно, должен оказывать более сильное давление, нежели обыкновенный.
319 ₽
Возрастное ограничение:
16+
Дата выхода на Литрес:
22 января 2018
Объем:
363 стр. 223 иллюстрации
ISBN:
978-5-9524-5230-5
Правообладатель:
Центрполиграф
Формат скачивания:
epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip

С этой книгой читают