Читайте только на ЛитРес

Книгу нельзя скачать файлом, но можно читать в нашем приложении или онлайн на сайте.

Читать книгу: «The Art of Logical Thinking; Or, The Laws of Reasoning», страница 5

Atkinson William Walker
Шрифт:

CHAPTER XII.
REASONING BY INDUCTION

The term "Induction," in its logical usage, is defined as follows: "(a) The process of investigating and collecting facts; and (b) the deducing of an inference from these facts; also (c) sometimes loosely used in the sense of an inference from observed facts." Mill says: "Induction, then, is that operation of the mind, by which we infer that what we know to be true in a particular case or cases, will be true in all cases which resemble the former in certain assignable respects. In other words, Induction is the process by which we conclude that what is true of certain individuals of a class, is true of the whole class, or that what is true at certain times will be true in similar circumstances at all times."

The Basis of Induction is the axiom that: "What is true of the many is true of the whole." Esser, a well known authority, states this axiom in rather more complicated form, as follows: "That which belongs or does not belong to many things of the same kind, belongs or does not belong to all things of the same kind."

This basic axiom of Induction rests upon the conviction that Nature's laws and manifestations are regular, orderly and uniform. If we assume that Nature does not manifest these qualities, then the axiom must fall, and all inductive reason must be fallacious. As Brooks well says: "Induction has been compared to a ladder upon which we ascend from facts to laws. This ladder cannot stand unless it has something to rest upon; and this something is our faith in the constancy of Nature's laws." Some authorities have held that this perception of the uniformity of Nature's laws is in the nature of an intuitive truth, or an inherent law of our intelligence. Others hold that it is in itself an inductive truth, arrived at by experience and observation at a very early age. We are held to have noticed the uniformity in natural phenomena, and almost instinctively infer that this uniformity is continuous and universal.

The authorities assume the existence of two kinds of Induction, namely: (1) Perfect Induction; and (2) Imperfect Induction. Other, but similar, terms are employed by different authorities to designate these two classes.

Perfect Induction necessitates a knowledge of all the particulars forming a class; that is, all the individual objects, persons, things or facts comprising a class must be known and enumerated in this form of Induction. For instance, if we knew positively all of Brown's children, and that their names were John, Peter, Mark, Luke, Charles, William, Mary and Susan, respectively; and that each and every one of them were freckled and had red hair; then, in that case, instead of simply generalizing and stating that: "John, Peter, Mark, Luke, Charles, William, Mary and Susan, who are all of Brown's children, are freckled and have red hair," we would save words, and state the inductive conclusion: "All Brown's children are freckled and have red hair." It will be noticed that in this case we include in the process only what is stated in the premise itself, and we do not extend our inductive process beyond the actual data upon which it is based. This form of Induction is sometimes called "Logical Induction," because the inference is a logical necessity, without the possibility of error or exception. By some authorities it is held not to be Induction at all, in the strict sense, but little more than a simplified form of enumeration. In actual practice it is seldom available, for it is almost impossible for us to know all the particulars in inferring a general law or truth. In view of this difficulty, we fall back upon the more practical form of induction known as:

Imperfect Induction, or as it is sometimes called "Practical Induction," by which is meant the inductive process of reasoning in which we assume that the particulars or facts actually known to us correctly represent those which are not actually known, and hence the whole class to which they belong. In this process it will be seen that the conclusion extends beyond the data upon which it is based. In this form of Induction we must actually employ the principle of the axiom: "What is true of the many is true of the whole" – that is, must assume it to be a fact, not because we know it by actual experience, but because we infer it from the axiom which also agrees with past experience. The conclusion arrived at may not always be true in its fullest sense, as in the case of the conclusion of Perfect Induction, but is the result of an inference based upon a principle which gives us a reasonable right to assume its truth in absence of better knowledge.

In considering the actual steps in the process of Inductive Reasoning we can do no better than to follow the classification of Jevons, mentioned in the preceding chapter, the same being simple and readily comprehended, and therefore preferable in this case to the more technical classification favored by some other authorities. Let us now consider these four steps.

First Step. Preliminary observation. It follows that without the experience of oneself or of others in the direction of observing and remembering particular facts, objects, persons and things, we cannot hope to acquire the preliminary facts for the generalization and inductive inference necessary in Inductive Reasoning. It is necessary for us to form a variety of clear Concepts or ideas of facts, objects, persons and things, before we may hope to generalize from these particulars. In the chapters of this book devoted to the consideration of Concepts, we may see the fundamental importance of the formation and acquirement of correct Concepts. Concepts are the fundamental material for correct reasoning. In order to produce a perfect finished product, we must have perfect materials, and a sufficient quantity of them. The greater the knowledge one possesses of the facts and objects of the outside world, the better able is he to reason therefrom. Concepts are the raw material which must feed the machinery of reasoning, and from which the final product of perfected thought is produced. As Halleck says: "There must first be a presentation of materials. Suppose that we wish to form the concept fruit. We must first perceive the different kinds of fruit – cherry, pear, quince, plum, currant, apple, fig, orange, etc. Before we can take the next step, we must be able to form distinct and accurate images of the various kinds of fruit. If the concept is to be absolutely accurate, not one kind of fruit must be overlooked. Practically this is impossible; but many kinds should be examined. Where perception is inaccurate and stinted, the products of thought cannot be trustworthy. No building is firm if reared on insecure foundations."

In the process of Preliminary Observation, we find that there are two ways of obtaining a knowledge of the facts and things around us. These two ways are as follows:

I. By Simple Observation, or the perception of the happenings which are manifested without our interference. In this way we perceive the motion of the tides; the movement of the planets; the phenomena of the weather; the passing of animals, etc.

II. By the Observation of Experiment, or the perception of happenings in which we interfere with things and then observe the result. An experiment is: "A trial, proof, or test of anything; an act, operation, or process designed to discover some unknown truth, principle or effect, or to test some received or reputed truth or principle." Hobbes says: "To have had many experiments is what we call experience." Jevons says: "Experimentation is observation with something more; namely, regulation of the things whose behavior is to be observed. The advantages of experiment over mere observation are of two kinds. In the first place, we shall generally know much more certainly and accurately with what we are dealing, when we make experiments than when we simply observe natural events… It is a further advantage of artificial experiments, that they enable us to discover entirely new substances and to learn their properties… It would be a mistake to suppose that the making of an experiment is inductive reasoning, and gives us without further trouble the laws of nature. Experiments only give us the facts upon which we may afterward reason… Experiments then merely give facts, and it is only by careful reasoning that we can learn when the same facts will be observed again. The general rule is that the same causes will produce the same effects. Whatever happens in one case will happen in all like cases, provided that they are really like, and not merely apparently so… When we have by repeated experiments tried the effect which all the surrounding things might have on the result, we can then reason with much confidence as to similar results in similar circumstances… In order that we may, from our observations and experiments, learn the law of nature and become able to foresee the future, we must perform the process of generalization. To generalize is to draw a general law from particular cases, and to infer that what we see to be true of a few things is true of the whole genus or class to which these things belong. It requires much judgment and skill to generalize correctly, because everything depends upon the number and character of the instances about which we reason."

Having seen that the first step in Inductive Reasoning is Preliminary Observation, let us now consider the next steps in which we may see what we do with the facts and ideas which we have acquired by this Observation and Experiment.

CHAPTER XIII.
THEORY AND HYPOTHESES

Following Jevons' classification, we find that the Second Step in Inductive Reasoning is that called "The Making of Hypotheses."

A Hypothesis is: "A supposition, proposition or principle assumed or taken for granted in order to draw a conclusion or inference in proof of the point or question; a proposition assumed or taken for granted, though not proved, for the purpose of deducing proof of a point in question." It will be seen that a Hypothesis is merely held to be possibly or probably true, and not certainly true; it is in the nature of a working assumption, whose truth must be tested by observed facts. The assumption may apply either to the cause of things, or to the laws which govern things. Akin to a hypothesis, and by many people confused in meaning with the latter, is what is called a Theory.

A Theory is: "A verified hypothesis; a hypothesis which has been established as, apparently, the true one." An authority says "Theory is a stronger word than hypothesis. A theory is founded on principles which have been established on independent evidence. A hypothesis merely assumes the operation of a cause which would account for the phenomena, but has not evidence that such cause was actually at work. Metaphysically, a theory is nothing but a hypothesis supported by a large amount of probable evidence." Brooks says: "When a hypothesis is shown to explain all the facts that are known, these facts being varied and extensive, it is said to be verified, and becomes a theory. Thus we have the theory of universal gravitation, the Copernican theory of the solar system, the undulatory theory of light, etc., all of which were originally mere hypotheses. This is the manner in which the term is usually employed in the inductive philosophy; though it must be admitted that it is not always used in this strict sense. Discarded hypotheses are often referred to as theories; and that which is actually a theory is sometimes called a hypothesis."

The steps by which we build up a hypothesis are numerous and varied. In the first place we may erect a hypothesis by the methods of what we have described as Perfect Induction, or Logical Induction. In this case we proceed by simple generalization or simple enumeration. The example of the freckled, red-haired children of Brown, mentioned in a previous chapter, explains this method. It requires the examination and knowledge of every object or fact of which the statement or hypothesis is made. Hamilton states that it is the only induction which is absolutely necessitated by the laws of thought. It does not extend further than the plane of experience. It is akin to mathematical reasoning.

Far more important is the process by which hypotheses are erected by means of inferences from Imperfect Induction, by which we reason from the known to the unknown, transcending experience, and making true inductive inferences from the axiom of Inductive Reasoning. This process involves the subject of Causes. Jevons says: "The cause of an event is that antecedent, or set of antecedents, from which the event always follows. People often make much difficulty about understanding what the cause of an event means, but it really means nothing beyond the things that must exist before in order that the event shall happen afterward."

Causes are often obscure and difficult to determine. The following five difficulties are likely to arise: I. The cause may be out of our experience, and is therefore not to be understood; II. Causes often act conjointly, so that it is difficult to discover the one predominant cause by reason of its associated causes; III. Often the presence of a counteracting, or modifying cause may confuse us; IV. Often a certain effect may be caused by either of several possible causes; V. That which appears as a cause of a certain effect may be but a co-effect of an original cause.

Mill formulated several tests for ascertaining the causal agency in particular cases, in view of the above-stated difficulties. These tests are as follows: (1) The Method of Agreement; (2) The Method of Difference; (3) The Method of Residues; and (4) The Method of Concomitant Variations. The following definitions of these various tests are given by Atwater as follows:

Method of Agreement: "If, whenever a given object or agency is present without counteracting forces, a given effect is produced, there is a strong evidence that the object or agency is the cause of the effect."

Method of Difference: "If, when the supposed cause is present the effect is present, and when the supposed cause is absent the effect is wanting, there being in neither case any other agents present to effect the result, we may reasonably infer that the supposed cause is the real one."

Method of Residue: "When in any phenomena we find a result remaining after the effects of all known causes are estimated, we may attribute it to a residual agent not yet reckoned."

Method of Concomitant Variations: "When a variation in a given antecedent is accompanied by a variation of a given consequent, they are in some manner related as cause and effect."

Atwater adds: "Whenever either of these criteria is found free from conflicting evidence, and especially when several of them concur, the evidence is clear that the cases observed are fair representatives of the whole class, and warrant a valid inductive conclusion."

Jevons gives us the following valuable rules:

I. "Whenever we can alter the quantity of the things experimented on, we can apply a rule for discovering which are causes and which are effects, as follows: We must vary the quantity of one thing, making it at one time greater and at another time less, and if we observe any other thing which varies just at the same times, it will in all probability be an effect."

II. "When things vary regularly and frequently, there is a simple rule, by following which we can judge whether changes are connected together as causes and effects, as follows: Those things which change in exactly equal times are in all likelihood connected together."

III. "It is very difficult to explain how it is that we can ever reason from one thing to a class of things by generalization, when we cannot be sure that the things resemble each other in the important points… Upon what grounds do we argue? We have to get a general law from particular facts. This can only be done by going through all the steps of inductive reasoning. Having made certain observations, we must frame hypotheses as to the circumstances, or laws from which they proceed. Then we must reason deductively; and after verifying the deductions in as many cases as possible, we shall know how far we can trust similar deductions concerning future events… It is difficult to judge when we may, and when we may not, safely infer from some things to others in this simple way, without making a complete theory of the matter. The only rule that can be given to assist us is that if things resemble each other in a few properties only, we must observe many instances before inferring that these properties will always be joined together in other cases."

CHAPTER XIV.
MAKING AND TESTING HYPOTHESES

The older philosophers and logicians were often at a loss how to reasonably account for the origin of hypotheses. It will be seen, after giving the matter a little thought, that the actual formation of the hypothesis is more than a mere grouping together or synthesis of facts or ideas – there is another mental process which actually evolves the hypothesis or theory – which gives a possible reason. What is this mental process? Let us consider the matter. Brooks well says: "The hypotheses of science originate in what is called anticipation. They are not the result of a mere synthesis of facts, for no combination of facts can give the law or cause. We do not see the law; we see the facts and the mind thinks the law. By the power of anticipation, the mind often leaps from a few facts to the cause which produces them or the law which governs them. Many hypotheses were but a happy intuition of the mind. They were the result of what La Place calls 'a great guess,' or what Plato so beautifully designates as 'a sacred suspicion of truth.' The forming of hypotheses requires a suggestive mind, a lively fancy, a philosophic imagination, that catches a glimpse of the idea through the form, or sees the law standing behind the fact."

The student of The New Psychology sees in the mental operation of the forming of the hypothesis – "the mind thinking the law" – but an instance of the operation of the activities of the Subconscious Mind, or even the Superconscious Mind. (See the volume on the Subconscious Mind in this series.) Not only does this hypothesis give the explanation which the old psychology has failed to do, but it agrees with the ideas of others on the subject as stated in the above quotation from Brooks; and moreover agrees with many recorded instances of the formation of great hypotheses. Sir Wm. Hamilton discovered the very important mathematical law of quaternions while walking one day in the Dublin Observatory. He had pondered long on the subject, but without result. But, finally, on that eventful day he suddenly "felt the galvanic circle of thought" close, and the result was the realization of the fundamental mathematical relations of the problem. Berthelot, the founder of Synthetic Chemistry, has testified that the celebrated experiments which led to his remarkable discoveries were seldom the result of carefully followed lines of conscious thought or pure reasoning processes; but, instead, came to him "of their own accord," so to speak, "as from a clear sky." In these and many other similar instances, the mental operation was undoubtedly purely subjective and subconscious. Dr. Hudson has claimed that the "Subjective Mind" cannot reason inductively, and that its operations are purely and distinctly deductive, but the testimony of many eminent scientists, inventors and philosophers is directly to the contrary.

In this connection the following quotation from Thomson is interesting: "The system of anatomy which has immortalized the name of Oken is the consequence of a flash of anticipation which glanced through his mind when he picked up in a chance walk the skull of a deer, bleached and disintegrated by the weather, and exclaimed after a glance, 'It is part of a vertebral column!' When Newton saw the apple fall, the anticipatory question flashed through his mind, 'Why do not the heavenly bodies fall like this apple?' In neither case had accident any important share; Newton and Oken were prepared by the deepest previous study to seize upon the unimportant fact offered to them, and to show how important it might become; and if the apple and the deer-skull had been wanting, some other falling body, or some other skull, would have touched the string so ready to vibrate. But in each case there was a great step of anticipation; Oken thought he saw a type of the whole skeleton in a single vertebra, while Newton conceived at once that the whole universe was full of bodies tending to fall… The discovery of Goethe, which did for the vegetable kingdom what Oken did for the animal, that the parts of a plant are to be regarded as metamorphosed leaves, is an apparent exception to the necessity of discipline for invention, since it was the discovery of a poet in a region to which he seemed to have paid no especial or laborious attention. But Goethe was himself most anxious to rest the basis of this discovery upon his observation rather than his imagination, and doubtless with good reason… As with other great discoveries, hints had been given already, though not pursued, both of Goethe's and Oken's principles. Goethe left his to be followed up by others, and but for his great fame, perhaps his name would never have been connected with it. Oken had amassed all the materials necessary for the establishment of his theory; he was able at once to discover and conquer the new territory."

It must not be supposed, however, that all hypotheses flashing into the field of consciousness from the Subconsciousness, are necessarily true or correct. On the contrary many of them are incorrect, or at least only partially correct. The Subconsciousness is not infallible or omniscient – it merely produces results according to the material furnished it. But even these faulty hypotheses are often of value in the later formation of a correct one. As Whewell says: "To try wrong guesses is with most persons the only way to hit upon right ones." Kepler is said to have erected at least twenty hypotheses regarding the shape of the earth's orbit before he finally evolved the correct one. As Brooks says: "Even incorrect hypotheses may be of use in scientific research, since they may lead to more correct suppositions." The supposition of the circular motions of the heavenly bodies around the earth as a center, which lead to the conception of epicycles, etc., and at last to the true theory is an illustration of this. So the 'theory of phlogiston' in chemistry, made many facts intelligible, before the true one of 'oxidation' superseded it. And so, as Thomson says, "with the theory that 'Nature abhors a vacuum,' which served to bring together so many cognate facts not previously considered as related. Even an incorrect conception of this kind has its place in science, so long as it is applicable to the facts; when facts occur which it cannot explain, we either correct it or replace it with a new one. The pathway of science, some one remarks, is strewn with the remains of discarded hypotheses."

Halleck says regarding the danger of hasty inference: "Men must constantly employ imperfect induction in order to advance; but great dangers attend inductive inferences made from too narrow experience. A child has experience with one or two dogs at his home. Because of their gentleness, he argues that all dogs are gentle. He does not, perhaps, find out the contrary until he has been severely bitten. His induction was too hasty. He had not tested a sufficiently large number of dogs to form such a conclusion. From one or two experiences with a large crop in a certain latitude, a farmer may argue that the crop will generally be profitable, whereas it may not again prove so for years. A man may have trusted a number of people and found them honest. He concludes that people as a rule are honest, trusts a certain dishonest man, and is ruined. The older people grow, the more cautious they generally become in forming inductive conclusions. Many instances are noted and compared; but even the wisest sometimes make mistakes. It once was a generally accepted fact that all swans were white. Nobody had ever seen a dark swan, and the inference that all swans were white was regarded as certainly true. Black swans were, however, found in Australia."

Brooks says regarding the probability of hypotheses: "The probability of a hypothesis is in proportion to the number of facts and phenomena it will explain. The larger the number of facts and phenomena that it will satisfactorily account for, the greater our faith in the correctness of our supposition… If there is more than one hypothesis in respect to the facts under consideration, that one which accounts for the greatest number of facts is the most probable… In order to verify a hypothesis it must be shown that it will account for all the facts and phenomena. If these facts are numerous and varied, and the subject is so thoroughly investigated that it is quite certain that no important class of facts has been overlooked, the supposition is regarded as true, and the hypothesis is said to be verified. Thus the hypothesis of the 'daily rotation' of the earth on its axis to account for the succession of day and night is accepted as absolutely true. This is the view taken by Dr. Whewell and many other thinkers in respect to the verification of a hypothesis. Some writers, however, as Mill and his school, maintain that in order to verify a hypothesis, we must show not only that it explains all the facts and phenomena, but that there is no other possible hypothesis which will account for them… The former view of verification is regarded as the correct one. By the latter view, it is evident that a hypothesis could never be verified."

Jevons says: "In the fourth step (verification), we proceed to compare these deductions with the facts already collected, or when necessary and practicable, we make new observations and plan new experiments, so as to find out whether the hypothesis agrees with nature. If we meet with several distinct disagreements between our deductions and our observations, it will become likely that the hypothesis is wrong, and we must then invent a new one. In order to produce agreement it will sometimes be enough to change the hypothesis in a small degree. When we get hold of a hypothesis which seems to give results agreeing with a few facts, we must not at once assume that it is certainly correct. We must go on making other deductions from it under various circumstances, and, whenever it is possible, we ought to verify these results, that is, compare them with facts observed through the senses. When a hypothesis is shown in this way to be true in a great many of its results, especially when it enables us to predict what we should never otherwise have believed or discovered, it becomes certain that the hypothesis itself is a true one… Sometimes it will happen that two or even three quite different hypotheses all seem to agree with certain facts, so that we are puzzled which to select… When there are thus two hypotheses, one as good as the other, we need to discover some fact or thing which will agree with one hypothesis and not with the other, because this immediately enables us to decide that the former hypothesis is true and the latter false."

In the above statements regarding the verification of hypotheses we see references made to the testing of the latter upon the "facts" of the case. These facts may be either the observed phenomena or facts apparent to the perception, or else facts obtained by deductive reasoning. The latter may be said to be facts which are held to be true if the hypothesis be true. Thus if we erect the hypothesis that "All men are mortal," we may reason deductively that it will follow that each and every thing that is a man must die sooner or later. Then we test our hypotheses upon each and every man whom we may subject to observation and experiment. If we find a single man who does not die, then the test disproves our hypotheses; if on the contrary all men (the "facts" in the case) prove to be mortal, then is our hypotheses proven or established. The deductive reasoning in this case is as follows: "If so-and-so is true regarding such-and-such a class; and if this particular thing belongs to that class; then it will follow that so-and-so is true regarding this particular thing." This argument is expressed in what is called a Hypothetical Proposition (see Chapter IX), the consideration of which forms a part of the general subject of Deductive Reasoning. Therefore as Jevons has said, "Deductive Reasoning is the Third Step in Inductive Reasoning, and precedes Verification", which we have already considered. Halleck says: "After Induction has classified certain phenomena and thus given us a major premise, we may proceed deductively to apply the inference to any new specimen that can be shown to belong to that class. Induction hands over to deduction a ready-made major premise… Deduction takes that as a fact, making no inquiry about its truth… Only after general laws have been laid down, after objects have been classified, after major premises have been formed, can deduction be employed."

In view of the above facts, we shall now proceed to a consideration of that great class of Reasoning known under the term – Deductive Reasoning.

Возрастное ограничение:
12+
Дата выхода на Литрес:
30 июня 2017
Объем:
131 стр. 3 иллюстрации
Правообладатель:
Public Domain

С этой книгой читают