Читайте только на ЛитРес

Книгу нельзя скачать файлом, но можно читать в нашем приложении или онлайн на сайте.

Читать книгу: «On Germinal Selection as a Source of Definite Variation», страница 5

Шрифт:

APPENDIX

I. THE REJECTION OF SELECTION

Many years ago Semper25 denied the power of selection to create an organ, declaring that the organ must have previously existed before selection could have increased and developed it. More recently Wolff26 has distinguished himself by the vigor with which he has attacked the "task" of "setting aside the dogma of selection." Henry B. Orr27 is also of opinion that selection is not the real cause of improved organic states; he regards it as a factor checking growth in certain directions, but not as a cause producing growth. Likewise Yves Delâge,28 in his recent voluminous but in many respects excellent work, regards natural selection solely as a subordinate principle which is devoid of all power to create species (p. 391), although he grants to it certain functions, and even characterises it as "an admirable and perfectly legitimate principle" (p. 371). A more pronounced opponent of selection, of any kind, as a principle creating species, is the Rev. Mr. Henslow,29 whose views we shall discuss later, in Division VII. of this Appendix.

Finally, must be mentioned the name of Th. Eimer, as that of a pronounced and bitter enemy of the theory of selection. I shall leave it to others to decide whether he can properly be called an "opponent" of the principle, in the scientific acceptance of the word. I can see in the blind railings of the Tübingen Professor nothing but a reiteration of the same unproved assertions, mingled with loud praises of his own doughty performances and captious onslaughts on every one who does not value them as highly as their originator.30

The lack of confidence latterly placed in the theory of selection even by professed adherents of the doctrine, is well shown by such remarks as the following from Emery,31 who says: "Some pupils of Darwin have gone beyond their master and discovered in natural selection the sole and universal factor controlling variations. Thus there has arisen in the natural course of things a reaction, especially on the part of those who, while they accept evolution, will have naught to do with natural selection or Darwinism as they call it." Emery then professes himself a Darwinian, although not in the sense of Wallace and "other co-workers and pupils of Darwin." For him "natural selection is a very important factor in evolution, and in determining the direction of variation plays the highest part; but it is far from being the only factor and is probably also not the most efficient factor." Not the most efficient factor but plays the highest part!

II. CHEMICAL SELECTION

If we refer adaptation to selection, we have also to trace back to this source the origin of the organic combinations which make up the various tissues of the body and which go by the collective name of muscular, nervous, glandular substance, etc. Lloyd Morgan has prettily likened the vital processes to the periodic formation and discharge of explosive substances.32 Unstable combinations are upon the application of a stimulus suddenly disintegrated into simpler and more stable compounds; through this disintegration they evoke what is called the function of the disintegrating part—for example, certain changes of form (muscular contractions) or the excretion of the disintegrated products, etc.

Now how is it possible that such unstable chemical combinations, answering exactly to the needs of life, could have arisen in such marvellous perfection if the useful variations had not always been presented to the ceaselessly working processes of selection? or, if the constantly increasing adaptation to the constantly augmenting delicacy of operation of physiological substances had depended in its last resort on accidental variations? Hence, not only with regard to the "form" of organs, but also with regard to the chemical and physiological composition of their materials, we are referred to the constant presence of appropriate variations.

III. VARIATION AND MUTATION

I have still to add a few remarks on the subject touched on in the33 at page 31. The view there referred to was discussed by Professor Scott before in an article published in the American Journal of Science, Vol. XLVIII., for November, 1894, entitled "On Variations and Mutations." Following the precedent of Waagen and Neumayr, Scott sharply discriminates between the inconstant vacillating variations which it is supposed [?] produce simultaneously occurring "varieties," and "mutations," or the successively evolved time-variations of a phylum, which constitute the stages of phyletic development. The facts on which this view is based are those already adduced in the text—the Zielstrebigkeit (to use K. E. von Bär's phraseology) displayed in the visible paleontological development, the directness of advance of the modifications to a final "goal." "The direct, unswerving way in which development proceeds, however slowly, is not suggestive of many trials and failures in all directions save one." And again, "The march of transformation is the resultant of forces both internal and external which operate in a definite manner upon a changeable organism and similarly affect large numbers of individuals."

The two points which I have here italicised are actually the facts which separate phylogenetic from common individual variation: the definite manner of the change, repeated again and again without modification, and its occurrence in a large number of individuals.

Still the two are not solely a result of observation, deduced from paleontological data; they are also a consequence of the theory of selection, as was shown in the text. If the theory in its previous form was unable to fulfil this requirement, it is certainly now able to do so after germinal selection has been added, and it is not in any sense necessary to assume a difference of character between phylogenetic and ontogenetic variations. Bateson and Scott are wrong in imagining that I ask them "to abrogate reason" in pronouncing the "omnipotence of natural selection." On the contrary, the theory seems to me to accord so perfectly with the facts that we might, by reversing the process, actually construct the facts from the theory. What other than the actual conditions could be expected, if it is a fact that selection favors only the useful variations and singles them out from the rest by producing them in increasing distinctness and volume with every generation, and also in an increasing number of individuals? The mere displacement of the zero-point of useful variations alone must produce this effect, especially when it is supported by germinal selection. It is impossible, indeed, to see how considerable, that is perceptible, deviations could arise at all on the path of phyletic development if in each generation a large number of individuals always possessed the useful, that is, the phyletic variations? In fact, by the assumption itself, the difference between useful and less useful variations is merely one of degree, and that a slight one.

Hence, as I before remarked at page 31, I see no reason for assuming two kinds of hereditary variations, distinct as to their origin, such as Scott and the other palæontologists mentioned have been led to adopt, although with the utmost caution. I believe there is only one kind of variation proceeding from the germ, and that these germinal variations play quite different rôles according as they lie or do not lie on the path of adaptive transformation of the species, and consequently are or are not favored by germinal selection. To repeat what I have said in the footnote to page 31 only a relatively small portion of the numberless individual variations lie on the path of phyletic advancement and so mark out under the guidance of germinal selection the way of further development; and hence it would be quite possible to distinguish continuous, definitely directed variations from such as fluctuate hither and thither with no uniformity in the course of generations. The origin of the two is the same; they bear in them nothing that distinguishes the one from the other, and their success alone, that is, the actual resultant phyletic modification, permits their being known as phyletic or as vacillating variations. Uncertain fluctuations along the path of evolution are what the geologists would be naturally led to expect from the theory of selection, but which they were unable to discover in the facts; it is evident, however, that these fluctuations are not a logical consequence of the theory of selection as that is perfected by germinal selection, and there seems to me to be no reason now for attributing "variations" to the union of changing hereditary tendencies, while "mutations" are ascribed to the effect "of dynamical agencies acting long in a uniform way, and the results controlled by natural selection."

The idea which the Grecian philosophers evolved of the thousands of non-adaptive formations that nature brings forth by the side of adaptive ones, and which must subsequently all perish as being unfit to live, is certainly correct in its ultimate foundations. But it is in need of far more radical refinement than it underwent in the hands of Empedocles, or than it seems likely to undergo at the hands of many contemporary inquirers. We know now that nature did not produce isolated eyes, ears, arms, legs, and trunks, and afterwards permit them to be joined together just as the play of the fundamental forces of love and hatred directed, leaving the monsters to perish and granting permanent existence only to harmonious products. Yet there is a weak echo of this conception, although infinitely far removed from its prototype, in the question as to where all the non-adaptive individuals are preserved that have perished in the struggle for existence and been eliminated from development by selection? Where, for example, are the fossil remains of the rejected individuals in the line of the Horses? Certainly they should be forthcoming in far larger numbers than the individuals lying directly in the path of development, for by our very assumption the latter were greatly in the minority in every generation. Doubtless the question would be a proper one if our eyes were sufficiently keen-sighted to assign the life-value of the various minute differences that distinguish the "better" from the "worse" individuals of every generation. But this is a task which we can accomplish at best only with selective processes which are artificially directed by ourselves, as in the case of doves and chickens, and even there only with the utmost difficulty and only with reference to a single characteristic and not with any species which to-day exists in the state of nature. Picture, then, the difficulties attending such a task as applied to the meagre fossilic bones of prehistoric species, touching which the richest discoveries never so much as remotely approach to the actual number of individuals that have lived together for a single generation in the same habitat. If the differences between good and bad in a single generation were striking enough to be immediately remarked as such in fossil bones, the development of species would take place so rapidly that we could directly witness it in living species.

IV. REMARKS ON THE HISTORY OF DEFINITELY DIRECTED VARIATIONS

As to the attempt here made to apply the selective process to the elements of the germinal substance (the idioplasm) and thus to acquire a foothold for definitely directed variation not blind in its tendency but proceeding in the direction of adaptive growth, it is remarkable that the same was not made long ago by some one or other of the many who have thought and written on selection and evolution.

Allusions to a connexion between the direction of variation and the selective processes are to be found, but they remained unnoticed or undeveloped. I have been able to find at least two such observations, but would not wish to assert that there are not more of them hidden somewhere in the literature of the subject. One of them is old and comes from Fritz Müller. It was appended by his brother Hermann as a "Supplementary Remark" to his book Die Befruchtung der Blumen durch Insecten (1873) and is dated November 24, 1872. We read there: "My brother Fritz Müller communicates to me in a letter which reached my hands only after the bulk of the present work had passed through the press, the following law discovered by him, which materially facilitates the explanation by natural selection of the pronounced characters of sharply distinguished species: 'The moment a choice in a definite direction is made in a variable species, progressive modification from generation to generation in the same direction will set in as the result of this choice, wholly apart from the influence of external conditions. Transformation into new forms is thus greatly facilitated and accelerated.'"

The facts on which F. Müller based the enunciation of his law, are the results of several experiments with plants, the numbers of whose grains (maize), or styles, or flowering leaves, were, by the exercise of choice in the cultivation, made to change in definite directions. Accurately viewed their significance is the same as that of numerous other cases of artificial selection, for example, that of the long-tailed Japanese cock which was laid at the foundation of the theory in the text, although the numerical form of the observation gives more precision and distinctness to the reasoning based on them, than is to be observed in cases where we speak of characters as being simply "longer" or "shorter."

F. Müller's opinion regarding the increase of characters by selection is expressed as follows: "The simplest explanation of these facts appears to be that every species possesses the faculty of varying within certain limits; the crossing of different individuals, so long as no choice is effected in a definite direction, maintains the mean round which the oscillations take place at the same points, and consequently the extremes also remain unaltered. If, however, one side is preferred by natural or artificial selection, the mean is shifted in the direction of this side and accordingly the extreme forms are also displaced towards that side, going now beyond the original limit. However, this explanation does not satisfy me in all cases."

It is not known to me that F. Müller ever returned to this conception subsequently to the year 1872 or gave further developments of the same, nor have I been able to discover that it has been mentioned by other writers or incorporated in previous notions regarding selection.

The second naturalist who has approached the fundamental idea of my doctrine of germinal selection, is a more recent writer. I refer to the English botanist Thiselton-Dyer, a scientist whose occasional utterances on the general questions of biology have more than once evoked my sympathetic approval. In an article, "Variation and Specific Stability," which appeared in Nature for March 14, 1895, this author enunciates twenty theses touching this subject, many of which appear to me apposite and correct, particularly the following: In every species there is a mean specific form round which the variations are symmetrically grouped like shots around the bull's eye of a target. As soon as natural selection comes into play and favors one of these variations it must shift the centre of density. Variations arise by a change in the outward conditions of life and can be useful or indifferent; only in the first case will natural selection obtain control of them and "the new variation will get the upper hand and the centre of density will be shifted."

This is not germinal selection, but it is the same as what I have referred to in this and in the preceding essay as displacement of the zero-point of variation. Thiselton-Dyer did not draw the conclusion that a definitely directed variation answering to utility resulted from this process, which variation alone must cause the disappearance of useless parts, for the reason that he never attempted to penetrate to the causes of the shifting of the zero-point of variation. Neither Fritz Müller, whose utterances Thiselton-Dyer was obviously ignorant of, nor Thiselton-Dyer himself pushed his inquiries beyond the thought that the shifting in question resulted entirely in consequence of personal selection. There is no gainsaying that the degeneration of useless organs cannot be explained by personal selection alone, seeing that though the minus variations may possibly have a selective value at the beginning of a degenerative process, they certainly cannot have such in the subsequent course of the same, when the organ has dwindled down to a really minimal mass of substance as compared with the whole body. Of what advantage would it be to the whale if his hinder leg, now concealed in a mass of flesh and no longer protruding beyond the skin, should still be reduced one or several centimetres in size? (Spencer.) If the minus variations have no selective value, how can the upper limit of the variational field be constantly displaced downwards, as actually happens? It is unquestionable but something different from personal selection must come here co-determinatively into play.

V. HISTORICAL REMARKS CONCERNING THE ULTIMATE VITAL UNITS

(For this Appendix which is marked "Appendix V." in the German edition of Germinal Selection see the34 at page 40.)

VI. THE INITIAL STAGES OF USEFUL MODIFICATIONS

In characterising as "least" weighty the old objection that the variations are too small at the start to be useful and to be selected, I find myself diametrically opposed to many writers of the present day, who have taken up with renewed vigor this old stumbling block to the principle of selection. Bateson35 regards the deficient proof of the utility of initial stages as the most serious objection that can be made to natural selection. New organs must in the necessity of the case have first been imperfect; how, then, could they have been selected since imperfect organs cannot be useful? Answers from various quarters have already been made to this and to similar objections, and Darwin himself has referred to the fact that even the smallest variations may have selective value; Dohrn, too, has urged his principle of change of functions, which with regard to this question of the utility of initial stages has certainly a wide significance. Still, every transformation and new structure in the narrow sense of the word does not rest on change of function, and neither Darwin nor Wallace, nor any other more recent champion of the principle of selection, can ever succeed in demonstrating in every case the selective value of an initial stage. One reason why this cannot be done is because in no case of morphological variation do we really know what these initial stages are. To say that "new organs were at first necessarily imperfect" appears obvious enough, but it is at bottom a meaningless assertion, for it is not only possible but certain, that "imperfect" organs may still have selective value, and in by far the most cases have had selective value. The fact that we see to-day a long graduated line of forest-butterflies which possess resemblance to leaves and by this means are able in a measure to conceal themselves from prying eyes, yet that this resemblance in many species is very imperfect, in others more perfect, and in a very small number very perfect, simply proves that even "imperfect" formations may be of utility. The word "imperfect" in this connexion is itself very imperfect, for it is utterly anthropomorphic and estimates the biological value of a structure by our own peculiar artistic notions of its faithfulness to a leaf-copy, whilst we are really concerned here only with its protective value for the species in question, which is by no means dependent merely on the faithfulness of the copying, on the faithfulness of the imitation, but on numerous other factors, such as the frequency and sharp-sightedness of the enemies of the species, the fertility of the species, their frequency and persecution in earlier developmental stages, and so forth, in brief, on their need of protection on the one hand and on their other means of protection on the other.

Now all this cannot be exactly calculated in any given case, and it will be better, instead of haggling about individual cases concerning which we can never judge with certainty, to take the position adopted in the text and say: Since the utility of the initial stages must be assumed unless we are to renounce forever the explanation of adaptation, let us then take it for granted. No contradiction of facts is involved in this assumption; in fact, even individual variations exist whose eventual utility can be demonstrated, for example, the invisible differences enabling Europeans of certain constitutions to resist the attacks of tropical malarial fevers,—or the differences of structure, likewise not directly visible, which enable palms from the summits of the Cordilleras to withstand our winter climate better than palms of the same species from along the base-line of the mountains; and so on.

25.Semper, Die natürlichen Existenzbedingungen der Thiere, Leipsic, 1880, pp. 218-219.
26.Wolff, "Beiträge zur Kritik der Darwin'schen Lehre," Biolog. Centralblatt, Vol. X., Sept. 15, 1890, and "Bemerkungen zum Darwinismus mit einem experimentellen Beitrag zur Physiologie der Entwicklung," Biolog. Centralblatt, Vol. XIV., Sept. 1, 1894.
27.Henry B. Orr, A Theory of Development and Heredity, New York, 1893.
28.Yves Delâge, La structure du protoplasma et les théories sur l'hérédité et les grands problèmes de la biologie générale, Paris, 1895.
29.Henslow, The Origin of Species Without the Aid of Natural Selection, A Reply to Wallace. 1894.
30.If any one should deem these words too severe, let him read the sarcastic passages in which Eimer has dispatched the late unfortunate Eric Haase who had been presumptuous enough to oppose the Tübingen Professor's deliverances on certain points. Haase, as we all know, fell a victim to the climate of the tropics, shortly after resigning the post of Director of the natural science collections in Bangkok, in order to return to Germany and to work out the fruits of his tropical sojourn. The unfortunate end of this accomplished man who had rendered important services to science had no effect in mollifying the resentment of Herr Eimer at the opposition which his views had encountered; and in twenty printed pages he takes him to task in the most personal and rancorous manner for this affront, remarking at the close: "In the meantime Herr Haase has died. Nevertheless I owe it to myself, in spite of this occurrence, to make public the foregoing facts, in order," etc. Any one who is interested in knowing the motives of Herr Eimer's excuse may find them in his book Artbildung and Verwandtschaft bei den Schmetterlingen, Part II., p. 66.
31."Gedanken zur Descendenz- und Vererbungstheorie." Biolog. Centralblatt, July 15, 1893.
32.C. Lloyd Morgan, Animal Life and Intelligence, London, 1890-1891, p. 30-33.
33.On the same day on which the present address was delivered at the International Congress of Zoölogists in Leyden, and on the same occasion, Dr. W. B. Scott, Professor of Geology in Princeton College, New Jersey, read a very interesting paper on the tertiary mammalian fauna of North America, in which, without a knowledge of my paper, he took his stand precisely on this argument and arrived at the opinion that it could not possibly be the ordinary individual variations which accomplished phyletic evolution, but that it was necessary to assume in addition phyletic variations. I believe our views are not as widely remote as might be supposed. Of course, I see no reason for assuming two kinds of hereditary variations, different in origin. Still it is likely that only a relatively small portion of the numberless individual variations lie on the path of phyletic advancement and so under the guidance of germinal selection mark out the way of further development; and hence it would be quite possible in this sense to distinguish continuous, definitely directed individual variations from such as fluctuate hither and thither with no uniformity in the course of generations. The root of the two is of course the same, and they admit of being distinguished from each other only by their success, phyletic modification, or by their failure.
34.Delâge, in La structure du protoplasma et les théories sur l'hérédité, etc., Paris, 1895, is mistaken in attributing to Herbert Spencer the merit of having first pointed out the necessity of the assumption of biological units ranking between the molecule and the cell. Brücke set forth this idea three years previously to Spencer and established it exhaustively in a paper which in Germany at least is famous ("Elementarorganismen," Wiener Sitzungsberichte, October 10, 1861, Vol. XLIV., II., p. 381). Spencer's Principles of Biology appeared between 1864 and 1868; consequently there can be no dispute touching the priority of the idea. Strangely enough Delâge cites Brücke's essay in the Bibliographical Index at the end of his book correctly, although Brücke's name and views are nowhere mentioned in the book itself. It is to be observed, however, that the elementary organisms of Brücke are not merely the precursors of Spencer's "physiological units," but repose on much firmer foundations than the latter, which, as Delâge himself remarks, are at bottom nothing more than magnified molecules and not combinations of different molecules of such character as to produce necessarily phenomena of life. He aptly remarks on this point: "the physiological units of Spencer are only chemical molecules of greater complexity than the rest, and as he defines them they would be regarded as such by every chemist. He attributes to them no property essentially different from those of chemical molecules." Assimilation, growth, propagation, in short the attributes of life, are not attributed by Spencer to his units, while Brücke by his very designation "elementary organisms" expresses the idea of "ultimate living units," to use Wiesner's phrase. Of course this particular aspect of the vital units was not emphasised by Brücke with the same distinctness and sharpness as by recent inquirers, who took up Brücke's ideas thirty years after. I refer to the conception that the union of a definite combination of heterogeneous molecules into an invisibly small unit, forms the cradle or focus of the vital phenomena. This was first done and apparently on independent considerations by De Vries, and soon after by Wiesner, and subsequently by myself (De Vries, Intracelluläre Pangenesis, Jena, 1889; Wiesner, Die Elementarstructur and das Wachsthum der lebenden Substanz, Vienna, 1892; Weismann, Das Keimplasma, Jena, 1892). Let me say at the close of this note that it is not my intention in thus defending the rights of a great physiologist, to censure in the least the distinguished author of L'hérédité who has set himself a remarkably high standard of exactitude in such matters. Certainly, when we consider the enormous extent of the literature that had to be mastered to produce his book, embracing as it did all the various theories of recent times, such an oversight is quite excusable.
35.Materials for the Study of Variation with Especial Regard to Discontinuity in the Origin of Species, London, 1895, p. 16.
Возрастное ограничение:
12+
Дата выхода на Литрес:
30 июня 2018
Объем:
100 стр. 1 иллюстрация
Переводчик:
Правообладатель:
Public Domain

С этой книгой читают

Новинка
Черновик
4,9
161