promo_banner

Реклама

Читать книгу: «SOUS LA VOILE», страница 2

Шрифт:

Pourquoi opter pour un autopilote ?

Premièrement parce qu’un autopilote est un instrument compact et discret. C’est vrai que lors de l’achat d’un système de pilotage automatique, l’argument le plus courant en défaveur des régulateurs d’allure est leur aspect incongru. Non seulement ils sont grands et volumineux – autrement dit tout sauf décoratifs – mais en plus ils sont lourds et donc peu maniables et ont la fâcheuse habitude d’être dans le chemin lorsqu’on manœuvre au moteur dans un port.

Les autopilotes, en revanche, sont montés de façon quasiment invisible dans le cockpit ou entièrement dissimulés sous le pont. Une fois qu’ils sont installés et qu’on en maîtrise les différentes fonctions, ils sont en outre d’une utilisation très conviviale. Les pilotes de cockpit sont légers, peu onéreux et précis. Pour certains navigateurs, il s’agit-là d’un argument décisif. Les autopilotes ont été conçus pour avoir du succès.

Pendant des années, le monde de la voile a été partagé en deux camps. Dans les années soixante-dix, les régulateurs d’allure étaient de tous les yachts de haute mer, sur lesquels ils étaient d’ailleurs indispensables, mais rares étaient les bateaux de plaisance qui en étaient équipés (même si de nombreux propriétaires rêvaient qu’ils le soient).

Ces vingt-cinq dernières années, il y a eu une violente controverse entre les défenseurs des deux systèmes. Un des sujets de discorde était que d’aucuns s’entêtaient à affirmer que des bateaux de lourds tonnages peuvent être "facilement" pilotés avec quelques fractions d’ampère. Aujourd’hui, on est devenu plus réaliste. De toute façon, les lois de la physique sont incontournables : tout développement d’énergie (puissance de pilotage) demande un apport d’énergie (courant électrique). Souvenez-vous de la loi de la conservation de l’énergie dont votre professeur de physique vous aura certainement parlé à l’école.

3. Les autopilotes
Fonctionnement

Les autopilotes dépendent d’un compas. Ce compas émet une impulsion de guidage qui active un moteur électrique ou hydraulique. Celui-ci actionne à son tour un vérin ou un cylindre hydraulique qui agit sur le gouvernail. Le compas compare en permanence les paramètres programmés et effectifs et continue d’envoyer des impulsions tant que le bateau ne tient pas le cap requis. Il y a un rapport direct entre :

· la puissance de pilotage

· la vitesse à laquelle cette force est exercée

· et la consommation d’énergie

Les constantes physiques entre ces facteurs étant toujours les mêmes, l’unique rapport qui compte à bord d’un yacht à voile (la puissance de pilotage/consommation) fait toujours l’objet d’un compromis. Obtenir une puissance de pilotage maximale avec un apport en énergie minimal relève de l’utopie.

Le hic, c’est qu’un moteur électrique développe une grande puissance lorsqu’il tourne lentement, mais une puissance nettement inférieure lorsqu’il tourne rapidement (cf. le moteur d’une voiture qui a d’excellentes reprises en première vitesse, mais plus la moindre en quatrième).

Les autopilotes se distinguent par la puissance de leur moteur. C’est cette puissance qui détermine le rapport entre la force exercée par le vérin et la vitesse à laquelle cette force est exercée. Forts de cette science, rares sont les fabricants d’autopilotes qui optent pour des moteurs à vitesse variable. Une forte baisse de régime qui doit permettre au moteur électrique d’exercer une plus forte pression sur le vérin, n’est de toute façon pas recommandée puisqu’elle s’inscrirait au détriment de la vitesse de correction de l’orientation du gouvernail.

Pour acheter un autopilote à bon escient, il vous faut avant tout connaître le couple maximal du gouvernail de votre bateau. Ce couple dépend de sa taille (longueur et largeur), de sa compensation (distance entre le centre de la mèche et le bord d’attaque du gouvernail) et de la vitesse potentielle du bateau. Ce couple peut être soit calculé, soit déterminé de façon empirique au vu de la force exercée sur la barre franche ou la barre à roue. Si la contrainte maximale exercée sur le gouvernail est supérieure au couple maximal du système de pilotage, il y aura forcément des problèmes. Si vous avez un bateau relativement lourd et que vous optez pour un modèle qui consomme peu d’énergie, le résultat sera tout sauf satisfaisant. Si le bateau est en limite des capacités de l’autopilote, préférez-lui un modèle supérieur : vous en profiterez plus longtemps. Or, si vous optez pour un autopilote plus puissant, vous ne trouverez aucune batterie capable de répondre à sa demande en énergie, à moins de pouvoir la recharger régulièrement. Comme quoi toute solution a son prix !

Les pilotes de cockpit pour barre franche

Les pilotes de cockpit les moins complexes sont ceux à vérin, dont le moteur électrique agit directement sur le vérin, via un système de transmission. Le vérin s’allonge ou se rétracte pour agir sur la barre franche.

D’ordinaire, les pilotes de cockpit consistent en un module dans lequel sont réunis le compas, le moteur et le vérin. Dans les modèles de cockpit plus grands, l’unité de commande et le compas sont logés dans deux modules distincts qui peuvent communiquer avec d’autres capteurs extérieurs via un bus de données.

Les instruments d’Autohelm qui sont compatibles avec le bus Sea Talk, portent le préfixe ST et ceux de Navico, le label Corus.

Les pilotes de barre franche ne sont pas très puissants et ne peuvent donc être utilisés que sur des bateaux de petite taille. Ils sont équipés de moteurs électriques compacts qui consomment peu d’énergie, mais dont la force doit être multipliée par une baisse de régime avant d’être exercée sur le vérin. C’est ce qui les rend bruyants et le bruit qu’ils produisent lorsqu’ils fonctionnent est gênant. Dans des conditions normales, les pilotes de cockpit consomment relativement peu d’énergie. Sous de fortes contraintes, ils peuvent néanmoins consommer jusqu’à 3 A. En plus, ils réagissent plutôt lentement.

Marques et modèles disponibles sur le marché :

· Autohelm 800

· Autohelm ST 1000

· Autohelm ST 2000

· Autohelm ST 4000 Tiller

· Navico TP 100

· Navico TP 300

Pilote de barre franche Autohelm ST 800

Les pilotes de cockpit pour barre à roue

Les pilotes de barre à roue sont similaires aux pilotes de barre franche. L’unique différence est, qu’avec un pilote de barre à roue, les corrections de cap sont imprimées par une courroie d’entraînement, une courroie dentée ou une roue dentée qui agit sur une poulie montée sur la barre à roue. Les pilotes de barre à roue peuvent être connectés sur un bus de données.

Marques et modèles disponiblessur le marché :

Autohelm ST 3000

Autohelm ST 4000 Wheel

Navico WP 100

Navico WP 300 CX

Pilote de barre à roue Navico WP 300 CX

Les pilotes intégrés

Les pilotes intégrés sont équipés d’un vérin ou d’un système hydraulique et de moteurs puissants qui sont raccordés à la mèche ou au secteur du gouvernail et agissent directement sur le safran principal. La jonction mécanique et le vérin peuvent être éventuellement remplacés par un système hydraulique. La pompe à huile de ce système hydraulique génère la pression nécessaire à l’actionnement d’un cylindre hydraulique qui agit, à son tour, sur le gouvernail. Ce système est conçu pour être monté sur des bateaux de grande taille. Les pilotes hydrauliques surdimensionnés, destinés aux bateaux d’une longueur de plus de 21 m/60 ft, sont équipés de pompes qui fonctionnent en continu et sont actionnées par des électrovannes.

Les trois modules du pilote intégré
L’unité de commande

L’unité de commande permet d’activer les différentes fonctions du pilote et autres modules connectés sur le bus de données. Elle est généralement dotée de touches (Autohelm) ou de boutons-poussoirs (Robertson). L’écran existe en divers formats. Les écrans de grand format offrent forcément une meilleure lisibilité. Toute exposition au soleil nuisant au contraste des écrans LCD même les plus performants, il est conseillé de les installer toujours à la verticale sur le pont. Le cas échéant, il y a moyen d’installer plusieurs unités de commande en différents endroits afin que l’opérateur ne soit pas obligé de rester dans le cockpit. Il existe également des télécommandes qui offrent une liberté de mouvement encore plus grande, ainsi que des joysticks qui agissent directement sur le pilote.

L’unité centrale de traitement (UCT)

L’unité centrale de traitement consiste en un ordinateur de bord, un compas, un capteur d’angle de barre, une girouette-anémomètre et une série de périphériques.

L’ordinateur de bord

L’ordinateur de bord, installé sous le pont, se charge du traitement de l’ensemble des commandes et signaux, du calcul des corrections de cap (position du gouvernail) et de l’activation du moteur du pilote. Autrement dit, il sert d’interface entre le software et le hardware et transpose les signaux en actions. Il existe deux types d’ordinateurs de bord :

· l’ordinateur de bord manuel qui doit être installé et configuré par l’utilisateur et/ou l’installateur ;

· l’ordinateur de bord autodidacte doté d’un système d’auto-apprentissage basé sur les dernières opérations et les données en mémoire.

Chacun d’eux a ses avantages, mais en général les navigateurs optent pour la solution de la facilité, c.-à-d. l’ordinateur autodidacte. Au-delà des quelques décisions élémentaires qu’il est appelé à prendre (mode de gain, fonction virement automatique, compas ou girouette), l’utilisateur doit dès lors uniquement s’assurer que le logiciel s’acquitte dûment de sa tâche. L’objectif primordial est d’obtenir un niveau de performance maximal tout en consommant un minimum d’énergie. Or, aucune de ces deux solutions n’est parfaite : les unités programmées par défaut ne sont jamais au diapason des conditions réelles et les unités à programmer soi-même ne donnent des résultats optimaux que si leur utilisateur est un véritable professionnel.

Le compas

À terre, les compas fonctionnent à merveille. Mais une fois en mer, les problèmes commencent : le tangage, le roulis, le gîte, les accélérations et décélérations lui donnent du fil à retordre. Pour pouvoir s’acquitter dûment de sa tâche, l’ordinateur de bord doit recevoir du compas un signal clair et intelligible, le cap de l’autopilote étant pleinement tributaire de l’impulsion de guidage en provenance du compas.

L’emplacement du compas est très important. Avant de l’installer, lisez donc attentivement ce qui suit :

· Plus le compas est éloigné du centre du bateau, plus il sera aux prises avec des mouvements qui risquent de le perturber.

· Toute interférence électromagnétique compromet la qualité du signal. Le compas doit donc être installé à l’écart de tout moteur, pompe ou générateur électrique, radio, télévision, instrument de navigation, câble d’alimentation et objet métallique.

· Les compas n’aiment pas les écarts de température. Ne les installez donc jamais à un endroit où ils risquent d’être en plein soleil ni à proximité d’un moteur, d’un réchaud ou d’un appareil de chauffage.

Sur la plupart des yachts à voile, l’endroit le plus approprié est sous le pont, au pied du mât, à condition que leur coque ne soit pas en acier. Sur les yachts récents, l’endroit le plus stable est situé un peu plus en arrière, à environ à un tiers de la distance entre la poupe et l’étrave du bateau. Sur des bateaux en acier, il y a plusieurs solutions. La première, appliquée avec succès par Robertson sur des bateaux de pêche commerciaux, consiste à installer sous le boîtier du compas un compas magnétique avec détecteur de cap qui détecte les interférences électromagnétiques. D’autres fabricants installent leurs compas fluxgate sur le pont ou même dans le mât, qui n’est pourtant pas l’endroit rêvé, vu son instabilité. Sur les bateaux en acier, il est particulièrement important d’installer le compas à bon escient et que ce dernier soit bien calibré (un compas Fluxgate ne peut être installé en aucun cas sous le pont d’un bateau en acier).

La distance entre le compas et l’ordinateur doit être la plus courte possible afin d’éviter les pertes de tension. Plus la distance est grande, plus les câbles de raccord devront être gros. Et enfin, autre détail important : le compas doit être installé à un endroit facilement accessible.

Vous avez le choix entre trois types de compas : le compas magnétique, le compas fluxgate et le compas gyroscopique. En version standard, la plupart des bateaux sont équipés d’un compas fluxgate. Mais il existe aussi des systèmes plus performants, tels que l’accéléromètre GyroPlus d’Autohelm ou ce nouveau type de compas Robertson qui convertit les signaux fluxgate en des signaux de fréquence dont les variations sont plus faciles à monitorer. Parmi les autres solutions d’optimisation, il y a également l’amortissement et le nivellement électronique. La qualité de l’impulsion de guidage est proportionnelle au prix et à la qualité du système de détection. You get what you pay for !

Concrètement, cela signifie que vous payerez environ ₤200 pour un simple compas fluxgate, ₤240 pour un compas magnétique et détecteur de cap, mais jusqu’à ₤9000 pour un compas gyroscopique high-tech.

Le capteur d’angle de barre

Ce capteur informe l’ordinateur de bord de la position du gouvernail. Ce capteur peut être intégré au pilote (où l’on ne risque pas de marcher dessus) ou sur la mèche du gouvernail (plus vulnérable).

La girouette-anémomètre

Ce capteur monté sur une girouette ou un mât transmet à l’ordinateur de bord des informations sur l’angle du vent apparent.

Les périphériques

Les signaux en provenance d’autres instruments de navigation tels que Decca, GPS, Loran, radar, loch et échosondeur, offrent autant d’informations supplémentaires dont l’ordinateur peut tirer profit pour calculer le cap avec une précision encore plus grande.

Les différents modules d’un pilote intégré Brookes & Gatehous

Les différents types d’autopilotes intégrés

Il existe quatre types d’autopilotes intégrés.

1. Les autopilotes linéaires mécaniques

Le moteur électrique agit sur le vérin, via un système de transmission mécanique. Ces autopilotes sont similaires aux pilotes de cockpit, mais nettement plus puissants. Vous avez le choix entre un moteur électrique à vitesse fixe (simple et bon marché, mais gourmand en énergie) et un moteur électrique à vitesse variable (plus efficace). Les autopilotes linéaires mécaniques sont plus efficaces au plan énergétique que leurs homologues linéaires hydrauliques, mais ils sont plus sensibles aux surcharges mécaniques dans des conditions extrêmes. L’usure les rend bruyants quand ils fonctionnent. Autrement dit, ils deviennent de plus en plus gênants avec le temps. Si l’autopilote est destiné à un usage intensif et appelé à être soumis à de fortes contraintes, il est préférable d’opter pour des organes d’accouplement en acier plutôt qu’en matière plastique, moins résistants. Autohelm propose un kit "Grand Prix" pour optimiser ses autopilotes linéaires. Robertson et la plupart des autres fabricants équipent d’office leurs autopilotes d’organes d’accouplement en acier.

Les autopilotes mécaniques sont moins encombrants que les autopilotes hydrauliques qui, contrairement à eux, sont équipés à l’arrière d’un dispositif de réglage de la plongée du bélier. Mark Parkin de Simrad UK a noté que nombre d’architectes navals oublient de tenir compte de l’emplacement requis par cette protubérance et se voient ainsi finalement contraints d’installer un autopilote linéaire.

Pilote linéaire mécanique Autohelm sur l’ULDB Budapest de 18m/ 60 ft

2. Les pilotes linéaires hydrauliques

Le vérin est actionné par une pompe hydraulique. Les autopilotes linéaires hydrauliques ont leur place sur des yachts de grande taille dont le gouvernail est soumis à de très fortes contraintes. Ils peuvent être actionnés par des pompes hydrauliques distinctes (Autohelm, VDO) ou intégrées (Brookes and Gatehouse, Robertson). Robertson propose également des "dual drives" ou doubles autopilotes linéaires qui sont deux fois plus puissants. Les autopilotes hydrauliques sont protégés contre les surcharges mécaniques par une valve qui s’ouvre lorsque la pression de l’huile atteint un certain plafond et par le coussin d’huile qui se forme suite à l’ouverture de cette valve. Les autopilotes linéaires hydrauliques sont nettement plus silencieux que les autopilotes linéaires mécaniques et ce, même à long terme. Ils sont donc plus confortables à bord. En plus, ils ont une longévité nettement supérieure : un atout indéniable pour qui fait de longues croisières et pourra se contenter d’emmener tout au plus quelques joints de rechange. Étant équipés à l’arrière d’un dispositif de réglage de la plongée du bélier (cf. plus haut), les autopilotes linéaires hydrauliques doivent être montés un peu plus en hauteur pour empêcher que ce dispositif ne heurte la coque.

3. Les pilotes hydrauliques

Ces pompes hydrauliques électromécaniques se branchent directement sur le circuit hydraulique de la barre à roue. Pour piloter un bateau de 25 tonnes ou plus, on peut utiliser une pompe qui génère en continu la force requise. À chaque mouvement du gouvernail, cette pompe, qui est constamment sous haute pression, agit dès lors intempestivement sur le système de guidage. Le bruit qui en résulte lui a valu le surnom de "bang-bang pilot".


Autopilotes hydrauliques Robertson

4. Les pilotes à chaîne

Le moteur électrique agit sur le gouvernail par le biais d’une transmission à chaîne. Les autopilotes à chaîne sont une solution idéale lorsqu’on a peu de place ou sur des bateaux moins récents dont la barre à roue s’oppose à l’installation de tout autre type d’autopilote. Les autopilotes pour barre à roue Whitlock peuvent être actionnés par n’importe quel moteur mécanique dont le bateau est déjà équipé et branché sur le système de transmission situé sous le pont. Dans ce cas, il suffit d’installer l’UCT et le module de commande.

L’autopilote doit être raccordé au gouvernail par un bras relativement court ou par la barre franche, si elle n’est pas trop longue, ou au secteur de la barre. Dans les deux cas, il doit être solidement arrimé à la coque qui, souvent, demande à être structurellement renforcée à cette fin.

Lorsque l’autopilote sert à réduire l’inertie, la barre à roue doit être mécaniquement déconnectée à l’aide de :

a) un embrayage mécanique (Edson),

b) une goupille mécanique (Alpha),

c) un embrayage mécanique actionné par une électrovanne (Autohelm), ou

d) un by-pass hydraulique actionné par une électrovanne

Si la barre à roue n’est pas dûment déconnectée, l’autopilote réagira trop lentement et consommera davantage. Lorsqu’on tient soi-même la barre, on a également intérêt à déconnecter ou court-circuiter l’autopilote afin que la barre soit plus sensible et pour permettre au gouvernail, dont l’angle de rotation est généralement limité par l’autopilote, de se mouvoir librement. Moins il y a de frictions, plus la barre à roue se laissera manœuvrer aisément.

Lorsque l’autopilote est mécaniquement déconnecté, il y a lieu d’immobiliser le bras de raccord pour empêcher qu’il n’aille dans tous les sens. Pour empêcher que le bélier hydraulique actionné par l’autopilote heurte les butées du gouvernail, il faut veiller à ce que la course de l’autopilote ne soit pas supérieure à celle du gouvernail. Lorsque le bateau est équipé d’un autopilote, il faut absolument prévoir un interrupteur d’arrêt d’urgence installé à proximité de la barre que l’on puisse actionner rapidement en cas de problèmes. Cet interrupteur ne peut jamais être monté sous le pont. En cas d’urgence, la distance entre la barre et le poste de navigation ou le panneau disjoncteur serait trop longue à franchir et risquerait d’être fatale pour l’autopilote. Chez Robertson, cet interrupteur est incorporé d’office dans la console de commande de l’autopilote.

Installer le système DIY d’un pilote intégré est un exercice complexe et périlleux pour quelqu’un qui ne s’y connaît pas vraiment. C’est probablement la raison pour laquelle Robertson n’offre aucune garantie sur ces systèmes.


Blue Papillon, un Jongert de 29 m/ 95 ft équipé d’un autopilote Segatron

301,38 ₽
Возрастное ограничение:
0+
Объем:
288 стр. 164 иллюстрации
ISBN:
9783844258493
Издатель:
Правообладатель:
Bookwire
Формат скачивания:
epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip