Читайте только на ЛитРес

Книгу нельзя скачать файлом, но можно читать в нашем приложении или онлайн на сайте.

Читать книгу: «Шпионские штучки, или Секреты тайной радиосвязи», страница 2

Шрифт:

Основные технические характеристики

При выборе микрофона для миниатюрного радиопередающего устройства помимо указанных выше конструктивных особенностей электромеханических преобразователей следует учитывать и другие характеристики микрофона. Среди них особое место занимают чувствительность, частотная характеристика и номинальный диапазон частот, а также модуль полного электрического сопротивления и уже упоминавшаяся форма диаграммы направленности.

Под чувствительностью микрофона понимается соотношение его выходного напряжения и акустического давления, которое явилось инициатором появления этого напряжения. Обычно чувствительность выражается в В/Па или в мВ/Па. В специализированной литературе нередко можно встретить выражение измеренной чувствительности в дБ по отношению к базовому уровню 1 В/Па.

Чувствительность микрофона является характеристикой, зависящей от частоты, и обычно нормируется на частоте 1000 Гц. Например, у электретных микрофонов отечественного производства типов МКЭ-332 и МКЭ-333 чувствительность, в зависимости от модификации, составляет от 3 мВ/Па до 24 мВ/Па. У импортного электретного микрофона типа МСЕ100 чувствительность не хуже 5 мВ/Па, а у микрофона SZN-15E эта характеристика не хуже 58 мВ/Па.

Частотная характеристика микрофона представляет собой зависимость его выходного напряжения от частоты акустического сигнала при постоянной величине акустического давления. Обычно частотная характеристика измеряется на рабочей оси микрофона, то есть по направлению его максимальной чувствительности. Поэтому такая характеристика нередко называется осевой или фронтальной. Частотная характеристика микрофона обычно указывается в его паспортных данных. При необходимости ее можно найти в справочной литературе или в сети Интернет.

Немалое значение имеют и такие параметры микрофона, как неравномерность его частотной характеристики, измеряемая в дБ, а также номинальный диапазон частот. У отечественных электретных микрофонов типов МКЭ-332 и МКЭ-333 нижняя граница номинального диапазона частот, в зависимости от модификации, находится в пределах от 50 Гц до 100 Гц, а верхняя граница – в пределах от 12 кГц до 15 кГц. Импортный электретный микрофон типа МСЕ100 имеет номинальный диапазон частот от 50 Гц до 12000 Гц, а у микрофона типа SZN-15E номинальный диапазон частот составляет от 80 Гц до 15000 Гц. Неравномерность частотной характеристики электретных микрофонов обычно находится в пределах от 1 дБ до 3 дБ.

Модуль полного электрического сопротивления или импеданс микрофона представляет собой величину сопротивления на его выходных контактах. Знание этой величины позволяет определить необходимое входное сопротивление каскада, к входу которого предполагается подключить микрофон, например, микрофонного усилителя, обеспечив оптимальное согласование. Модуль полного электрического сопротивления микрофона является характеристикой, зависящей от частоты, и обычно нормируется на частоте 1000 Гц. Например, у электретных микрофонов отечественного производства типа МКЭ-332 и МКЭ-333, как и у импортного микрофона типа МСЕ100 модуль полного электрического сопротивления составляет около 600 Ом.

При разработке низкочастотного тракта миниатюрных транзисторных радиопередатчиков и радиомикрофонов входное сопротивление следующего каскада (микрофонного усилителя) выбирается в 5–10 раз большим, чем импеданс микрофона. Использование в качестве нагрузки микрофона каскада со слишком малым входным сопротивлением приводит к искажению частотной характеристики, увеличению искажений, а также к снижению соотношения сигнал/шум.

Диаграмма направленности микрофона представляет собой зависимость его чувствительности от угла, образованного акустической осью микрофона и осью источника акустического сигнала. Таким образом, диаграмму или характеристику направленности можно представить как зависимость чувствительности микрофона на заданной частоте от угла падения звуковой волны. Форма диаграммы направленности может быть различной, например, круговая или вытянутая у ненаправленных микрофонов, в форме «восьмерки» у микрофонов с двусторонней направленностью, в форме кардиоиды и т. п. Уже упоминавшийся микрофон типа МКЭ-332 имеет диаграмму с односторонней направленностью, а микрофон типа МКЭ-333 является ненаправленным, форма его диаграммы направленности близка к круговой.

При выборе микрофона для низкочастотного тракта миниатюрных радиопередающих устройств особое внимание следует обратить, помимо рассмотренных выше параметров, на его массу и габаритные размеры, а также на определенные конструктивные особенности. Не следует забывать и о том, что конструктивно микрофоны могут отличаться друг от друга количеством и конструкцией выводов. Необходимо отметить, что динамические микрофоны, по сравнению с конденсаторными микрофонами, более чувствительны к воздействию вибраций, как и направленные микрофоны по сравнению с приемниками давления.

1.2. Особенности применения микрофонов

В процессе разработки малогабаритных радиопередающих устройств, в которых преобразование акустического сигнала в низкочастотный электрический сигнал осуществляется с помощью миниатюрных микрофонов, следует учитывать характерные особенности применяемых микрофонов. Эти особенности заключаются, в первую очередь, в необходимости использования соответствующих цепей подключения и согласования с последующими каскадами. Помимо этого, при применении электростатического микрофона в состав конструкции следует ввести каскад, обеспечивающий формирование напряжения питания этого микрофона.

Подключение и согласование

В настоящее время в малогабаритных транзисторных радиопередающих устройствах применяются микрофоны различных типов, но чаще всего разработчики отдают предпочтение динамическим, конденсаторным и электретным микрофонам. При этом выбор микрофона осуществляется с учетом его технических характеристик и параметров, основными из которых являются чувствительность, номинальный диапазон частот, характеристика направленности, модуль полного электрического сопротивления, а также масса, габаритные размеры и т. п. Для конденсаторных микрофонов не менее важной характеристикой является уровень эквивалентного звукового давления.

При подключении микрофона к входу следующего каскада, например, к входу микрофонного усилителя, помимо определенных электрических параметров самого микрофона (импеданс и напряжение) следует учитывать входные характеристики нагрузки (входное сопротивление и чувствительность, например, микрофонного усилителя). Поскольку в паспортных данных чувствительность микрофона указывается для так называемого режима холостого хода (без нагрузки), то входное сопротивление следующего каскада должно быть в 5–10 раз больше, чем модуль полного электрического сопротивления микрофона.

Так называемые низкоомные катушечные динамические микрофоны, чувствительность которых составляет обычно от 1 мВ/Па до 3 мВ/Па, чаще всего имеют выходное сопротивление в пределах от 50 Ом до 200 Ом и обеспечивают формирование выходного напряжения величиной от нескольких милливольт до 25 мВ. Поэтому при использовании такого микрофона следующий каскад должен иметь соответствующую чувствительность (не хуже 0,5 мВ) и сравнительно высокое входное сопротивление (не менее 1 кОм). Если же чувствительность, например, микрофонного усилителя будет хуже, то для согласования можно использовать микрофонный трансформатор.

Высокоомные катушечные динамические микрофоны, имеющие чувствительность до 10 мВ/Па при выходном сопротивление около 47 кОм, обеспечивают формирование выходного напряжения величиной до нескольких десятков милливольт. Подключаемый к выходу таких микрофонов каскад должен иметь чувствительность не хуже 5 мВ и входное сопротивление не менее 100 кОм. Некоторые типы высокоомных катушечных динамических микрофонов имеют встроенный согласующий трансформатор, а соответствующий переключатель позволяет пользователю выбрать величину выходного сопротивления (низкоомный или высокоомный выход).

Необходимо отметить, что существуют катушечные динамические микрофоны, в которых можно выбрать и так называемое среднее значение выходного сопротивления (от 400 Ом до 5000 Ом). Чувствительность таких микрофонов обычно составляет от 3 мВ/Па до 5 мВ/Па при максимальном выходном напряжении до 50 мВ. Совместно со среднеомными динамическими микрофонами следует использовать микрофонный усилитель с чувствительностью не хуже 3 мВ и входным сопротивлением от 4 кОм до 25 кОм.

Ленточные электродинамические микрофоны, чувствительность которых составляет 0,1 мВ/Па, имеют выходное сопротивление около 200 Ом и обеспечивают формирование выходного напряжения величиной от нескольких милливольт до 10 мВ. Подключаемый к выходу таких микрофонов каскад должен иметь чувствительность не хуже 0,3 мВ и входное сопротивление не менее 1 кОм.

Широко применяемые в транзисторных микропередатчиках электретные конденсаторные микрофоны, имеющие чувствительность от 1 мВ/Па до 10 мВ/Па при выходном сопротивление от 600 Ом до 3 кОм, обеспечивают формирование выходного напряжения величиной до 100 мВ. Поэтому следующий каскад должен иметь чувствительность от 0,5 мВ до 5 мВ при входном сопротивлении от 4,7 кОм до 15 кОм.

Особого внимания заслуживают схемотехнические решения, используемые при разработке цепей подключения электродинамического или электростатического микрофона к входному каскаду микрофонного усилителя.

Схемы подключения динамического микрофона не отличаются особой сложностью и в самом простом варианте выглядят так, как показано на рис. 1.1. Параллельно выводам динамического микрофона ВМ1 может быть подключен конденсатор С1 емкостью около 100 пФ, обеспечивающий подавление высокочастотных сигналов (рис. 1.1б).

Рис. 1.1. Принципиальные схемы подключения электродинамического микрофона к входному каскаду микрофонного усилителя


Для согласования выходного сопротивления динамического микрофона с входным сопротивлением микрофонного усилителя в состав схемы иногда включается специальный согласующий резистор R1 так, как показано на рис. 1.2.


Рис. 1.2. Принципиальные схемы подключения электродинамического микрофона и согласующего резистора к входному каскаду микрофонного усилителя


Резистор R1 может включаться последовательно (рис. 1.2а) или параллельно (рис. 1.2б) микрофону ВМ1. Величина сопротивления этого резистора и вариант его включения выбираются в зависимости от параметров примененного динамического микрофона и входных характеристик микрофонного усилителя, и может составлять от десятков ом до десятков килоом. Необходимо отметить, что при параллельном включении резистор R1 препятствует возможному самовозбуждению микрофонного усилителя при отключении микрофона от входного каскада.

Одной из особенностей электростатических (конденсаторных) микрофонов является сравнительно большое выходное сопротивление, поэтому в их состав включается специальный согласующий каскад, который также обеспечивает и усиление сигнала. Питание этого каскада осуществляется от внешнего источника постоянного напряжения, поэтому схемы включения таких микрофонов имеют определенные особенности. В транзисторных микропередатчиках для подключения электростатического (конденсаторного) микрофона к входному каскаду микрофонного усилителя чаще всего используются схемотехнические решения, изображенные на рис. 1.3.


Рис. 1.3. Принципиальные схемы подключения электростатического (конденсаторного) микрофона к входному каскаду микрофонного усилителя


При использовании электретных микрофонов отечественного производства с тремя гибкими выводами (проводами) синий провод подключается к положительной шине цепи питания, красный провод – к шине корпуса («минус» цепи питания), а белый провод должен быть подключен к входу микрофонного усилителя.

Конструктивной особенностью многих типов электретных микрофонов является наличие не трех, а всего лишь двух выводов или контактных площадок. При использовании таких микрофонов схемы его подключения будут выглядеть так, как изображено на рис. 1.4.


Рис. 1.4. Принципиальные схемы подключения электретного микрофона с двумя выводами к входному каскаду микрофонного усилителя


Цепи формирования напряжения питания

В процессе разработки, создания и проведения экспериментов с электростатическими микрофонами, входящими в состав низкочастотного тракта микромощных радиопередающих устройств, особое внимание следует уделить цепям питания таких микрофонов. Питание транзисторных микропередатчиков чаще всего осуществляется постоянным напряжением, в качестве источника которого используются обычные батарейки напряжением от 1,5 В до 12 В. Поэтому в рассматриваемых схемах отсутствуют цепи стабилизации. В то же время напряжение питания непосредственно самого микрофона может быть значительно ниже. Например, у электретных микрофонов отечественного производства типа МКЭ-332 и МКЭ-333 напряжение питания может составлять от 1,5 В до 9В, у импортного микрофона типа МСЕ100 – от 1,5 В до 10 В, а у микрофона типа SZN-15E эта характеристика находится в пределах от 3 В до 10 В. Поэтому напряжение питания на электростатический (конденсаторный) микрофон подается от цепи питания всего устройства через понижающий резистор R1. Величина сопротивления этого резистора зависит как от значения номинального напряжения питания самого конденсаторного (электретного) микрофона, так и от величины напряжения источника питания всей конструкции.

Номинальное напряжение питания большинства миниатюрных конденсаторных (электретных) микрофонов находится в пределах от 1,5 В до 3 В при потребляемом токе от 0,1 мА до 0,6 мА. Поэтому сопротивление резистора R1 может составлять от десятков ом до десятков килоом. Особо необходимо отметить, что при повторении рассматриваемых далее конструкций и проведении экспериментов с ними не следует слепо руководствоваться номиналом этого резистора, указанным на принципиальной схеме. Величину сопротивления резистора R1 в каждом конкретном случае следует выбирать с учетом параметров имеющегося в распоряжении радиолюбителя микрофона.

В подавляющем большинстве моделей или типов электретных микрофонов питание подается на положительный контакт или вывод, обозначенный знаком +. При этом вывод шины корпуса соединяется с отрицательным контактом источника питания. Однако следует помнить о том, что существуют электретные микрофоны как отечественного, так и импортного производства, в которых питание подается на отрицательный контакт или вывод, а вывод шины корпуса соединяется с положительным контактом источника питания. Поэтому перед практическим использованием выбранного микрофона рекомендуется внимательно изучить особенности его питания по прилагаемому паспорту или по справочным материалам.

К сожалению, ограниченный объем предлагаемого издания не позволяет рассмотреть все конструктивные особенности, характеристики и схемы включения микрофонов, используемых при разработке миниатюрных радиопередающих устройств. Необходимую дополнительную информацию заинтересованные читатели могут найти в специализированной литературе и в сети Интернет.

119 ₽
Возрастное ограничение:
0+
Дата выхода на Литрес:
05 июня 2015
Дата написания:
2010
Объем:
211 стр. 69 иллюстраций
ISBN:
978-5-94074-601-0
Правообладатель:
ДМК Пресс

С этой книгой читают