Читайте только на ЛитРес

Книгу нельзя скачать файлом, но можно читать в нашем приложении или онлайн на сайте.

Читать книгу: «The Romance of Plant Life», страница 22

Шрифт:

Yet if one glances back, it is interesting to see how insensible are the transitional steps which lead from independent life by the plant's own exertions to these last "pure parasites," which are entirely dependent on other plants for everything that they require.

The only other flowering plant which we shall mention in this chapter is now fortunately very rare in Great Britain. This is the Dodder, Cuscuta. It belongs to the Convolvulus or Bindweed order, but is entirely different from the rest of the family. Some climbing plants do throttle or choke the trunks of young trees if they twine round them too closely, but the Dodder has an entirely special and peculiar way of supporting itself to the detriment of others. It has no roots, no leaves, and scarcely any green chlorophyll; the Dodder is just a twining, thread-like, yellowish stem which carries here and there small round clusters of little convolvulus-like flowers. Wherever the Dodder thread twines round a hop or other plant, it puts out small suckers which drive their way into the stem of the hop and take from it all the food which the Dodder requires. When well developed it forms dense yellowish tangles of intricately entwined threads, which may cover whole bushes and entirely destroy the supporting plants. The Flax, Clover, and Hop Dodders are perhaps the worst of them all.

There are some rather interesting points in the history of the tiny dodder-seedling. It remains, quietly waiting, for about a month after most other plants have germinated.

Then it begins to grow rapidly: its tip pierces the soil and becomes fixed in it; then the rest of the little thread-like seedling begins to curve round or revolve. If it touches a grass or even a nettle stem, it twines itself or coils round it, drives in its suckers, and, on the strength of the nourishment which it extracts, it goes on revolving or turning until it forms the dense tangled masses referred to.

Then an eruption of flowers appears, from which later on hundreds of tiny seeds are let loose which will become Dodders in their turn.

The series of parasitic plants which have now been mentioned form a very interesting set. It must be pointed out that those which live merely on dead vegetable matter are "good" plants. They help on the quick and thorough employment of worn-out material.

Nor can we say off-hand that other parasites are "bad." They do kill other plants and do them harm, but then, are they not like a cattle-breeder who sends his inferior cattle to the butcher, keeping only those which are the very best of their kind? Perhaps these plants, by destroying the weak and unhealthy kinds, are doing a great deal of good.

Another interesting point about such parasites is that they are generally rare. They must be less common than their "host." Yet another is that they are all "degenerates." They show distinct traces of decay and bad development in their flowers and seed. That is also true in the case of parasitic animals.

Whether they do good or harm to the world of plants is doubtful, but there is no doubt that they are doing harm to their own chances!

CHAPTER XXVII
PLANTS ATTACKING ANIMALS

Brittle Star v. algæ – Fungus v. meal-worm – Stag-headed caterpillars – Liverwort v. small insects – Natural flower-pots – Watercups of Bromeliads – Sarracenia and inquiring insects – An unfortunate centipede – Pitcher-plants: their crafty contrivances – Blowflies defy them and spiders rob them – Bladderwort's traps which catch small fry – Hairs and their uses – Plants used as fly-papers – Butterwort v. midges – Its use as rennet – Sundew and its sensitive tentacles – Pinning down an insect – Suffocating and chloroforming the sundew – Venus' fly-trap which acts like a rat-trap – Have plants a nervous system?

ON the whole the animal world preys upon the vegetable world, and is in a way parasitic upon it. Indeed, the connexion between the two is very intimate – that of the diner and his dinner. One can scarcely imagine a more intimate connexion than this!

There are, however, a great many cases in which plants have turned the tables on their enemies and deliberately laid themselves out to catch and to destroy, to feed upon and to devour insects and small animals. One finds a few examples in almost every group of plants.

Thus there are certain green seaweeds or algæ which are said to attack and prey upon those peculiar sea-urchins known as Brittle Stars. The fungus which forms loops, acting exactly like a poacher's rabbit-snare, in order to catch mealworms, has been already mentioned.

Sometimes in the summer one may notice a little red club about two to three inches long sticking out of short grass. If one carefully pulls this up it is found to be growing out of a dead chrysalis or grub. It is a fungus whose spores have attacked the caterpillar; they have developed inside its body, and eventually, having completely eaten up the insect, form the red club, which is producing hundreds of thousands of spores intended to attack other caterpillars.

An allied fungus forms a peculiar branched fruit rather like a minute stag's horn, and the caterpillar may be seen for some time crawling about with this extraordinary fungus sticking out of its head. Of course the bacteria are, some of them, by far the most dangerous foes of animals (see page 328).

Then there is a small Liverwort, a little red, moss-like plant (Frullania tamarisci), which may be found growing on the bark of trees, which is said to catch animalcula in the small sack-like leaves which are underneath the ordinary ones.

But it is amongst the higher flowering plants that one discovers the most extraordinary and purposeful arrangements for capturing and digesting insects and other creatures.

In the case of many of these insectivorous plants, traps or pitfalls are prepared for the insect to fall into.

There are many plants in which the rain is intended to run in one particular direction, and it is not at all uncommon to find hollows at the base of the leaf where dust, dirt, and dead insects accumulate. One very curious plant of this sort is Dischidia Rafflesiana, in which the leaves have become quite like a pitcher, and have been compared to "natural flower-pots" intended to hold rain and leaf-mould.148

Then there is the Bromelia or Pineapple family, which consists for the most part of plants which live on the branches of trees. In very many of these a small cup is formed in the middle of the rosette or tuft of leaves, and water collects in this central cup.

The water smells abominably, and contains the bodies of dead insects, and rubbish of all kinds (see also p. 298). The remnants of these drowned insects are probably of use, because any valuable nitrogenous or other material may be absorbed with the water by the plant and help to nourish it, but in such a rough contrivance as this there is nothing comparable to the Side-saddle plant, Pitcher plant, and others.

The former, Sarracenia (or Side-saddle plant), is a common and rather widespread North American plant, which is especially abundant in Florida. It is cultivated in most botanical gardens, but can only be grown in greenhouses. The leaves are about six inches to a foot long, and are hollow, funnel-shaped tubes with a short, flat wing along one edge. They may be an inch or two in diameter at the top or wider end, where there is also a sort of half-open lid which keeps rain from getting into the inside of the leaf. The colour of these tube-like or vase-like leaves varies. It is often variegated with brown, red, and yellow, and is conspicuous enough even at a distance. Thus insects fly to these vases and alight on the little cap or lid, where they find honey and enjoy themselves. Other insects crawl up along the rim or wing of the vase, finding honey here and there along their road. Having got to the lid, the insect, being of an inquiring or inquisitive disposition, will look inside the tube and endeavour to find more honey therein.

It reaches the rim of the vase and finds that there is honey inside; it can easily crawl down, and fails to notice that the inside of the vase is lined with long stiff points which all point downwards. These points or hairs do not at all interfere with its passage down, and it proceeds to the honey which forms a smooth, slippery coating. Then, after greedily absorbing the honey, it tries to get out again. But that is quite a different matter. Each one of these points or hairs is facing it, and the whole inside is smooth and slippery. It struggles, slips, and falls into a pool of water which fills the lower part of the vase. That is what the plant has developed these pitchers for. The body of the insect after a time decays away, and only its empty shell remains. An extraordinary number of insects are caught by these Sarracenia vases. Sometimes in one which is only ten inches long, three or four inches will be full of the corpses of blackbeetles and other drowned insects, and it is said that birds occasionally visit these vases in order to pick them out. There is probably some sort of secretion in the water. "A centipede 1-2/3 inches long having fallen into a vase of Sarracenia purpurea in the night was found only half-immersed in the water. The upper half of the creature projected above the liquid, and made violent attempts to escape; but the lower part had not only become motionless, but had turned white from the effect of the surrounding liquid; it appeared to be macerated, and exhibited alterations which are not produced in so short a time in centipedes immersed in ordinary rainwater."149

In some Sarracenias the vase is brought up into a sort of hood or dome with the entrance at one side and below. There are thin patches on this dome or cupola, and small insects, attracted by the light which comes through these bare places, remain dashing themselves against them or crawling over them just as flies do on a window-pane, until they become tired and fall down into the water below.

There is something horrible in the cold and careful way in which this plant arranges its baits for "confiding insects. The latter are fed with honey, even on the very border of the assassin's den, but after this farewell revel they generally slip upon the smooth edge, and are hurled, like lost souls, down into the abyss."150

In another plant, the Pitcher Plant (Nepenthes, so called from the drug which produces the sleep of death), we find an even more beautifully arranged pitcher which acts in very much the same way. It is, however, only the end of a rather long leaf, or rather of its midrib, that is turned up to act as a pitcher. There are similar stiff hairs pointing downwards, and honey is plentifully secreted. But, in Nepenthes, there is also a distinct secretion which digests the bodies of the drowning insects. The ferment resembles the active principle of the gastric and pancreatic juices of the human body, and, as acids are also present, the insect's body becomes changed into nutritious juices which readily diffuse into the plant.151 Dr. Macfarlane found that when the pitchers were stimulated by being given insects, the liquid inside them could digest fibrin to jelly in from three-quarters to one hour's time.152 But certain insects have somehow managed to educate their larvæ to resist the gastric juices of Nepenthes.

Near Fort Dauphin, in Madagascar, I found great quantities of Nepenthes madagascariensis. Almost every pitcher was one-third to two-thirds full of corpses, but in some of them large, fat, white maggots, of a very unprepossessing appearance, were quite alive and apparently thriving. These must have been the larvæ of a blowfly similar to that which has been mentioned by others as inhabiting Sarracenia. At the same place a white spider was very often to be seen. Its web was spun across the mouth of a pitcher, and its body was quite invisible against the bleached remains inside.

It had suited its colour to the corpses within, in order that it might steal from the Nepenthes the due reward of all its ingenious contrivances!

A totally different arrangement is found in an inconspicuous and ugly little marsh and ditch plant called Utricularia or Bladderwort. It is very difficult to see, for unless it happens to be in flower it is entirely submerged in the water. The flowers, which are purple, are conspicuous and easily seen even at a distance. On these submerged leaves there are hundreds of small bladders. They are about the size of a pea, and are most ingeniously contrived to catch small water-animalcula. The general idea of the bladderwort is exactly that of the eel-pots so common in some parts of the Thames. There is a small flap which acts as a trapdoor. Small creatures probably take refuge in the bladders when pursued by the larger water-fleas, etc., for it must seem to them to be a safe and secure retreat.

But once within the door, they are imprisoned and cannot find their way out again. They perish inside and their bodies are digested by the plant; on the inside of the bladder there are gland hairs which also secrete a digestive fluid.

The bladderwort is dangerous to fish, for the little fry, when quite small, run their heads and gills into the bladders and are suffocated.

There are a great many kinds of Utricularia, and they occur in most of the great floral regions.

One of them has chosen a very extraordinary and curious situation. It lives inside the little cups of water which, as we have already mentioned, are formed by the leaves of some Bromeliads. The insects in the water which ought to nourish the Bromeliad (Tillandsia) are really used by the Utricularia. Other Utricularias live in damp earth, moss, etc.

It is not only by traps and pitfalls that plants catch insects: many have specially modified hairs which are quite efficient insect-catchers.

Hairs are used by plants for many different purposes, and it is rather interesting to see how quite a simple organ like a hair can be altered. The stinging hair of the nettle has already been mentioned; many grasses possess minute, rough, flinty hairs, which probably prevent snails from eating them. That also is probably the reason of the strong, rough, coarse hairs which cover the Borage and the Comfrey.

Then on the Chickweed and the Bird's-eye Speedwell there are lines of rather long, flexible hairs which at first sight appear to be of no use at all. But if you take either of these plants, and, holding it upright, place a large drop of water on the leaves, you will see that these hairs are intended to carry the water down the stem. The water runs along them. It is a very pretty little experiment, especially if done in artificial light, so that these hairs are, like the root hairs, intended to absorb or suck up water as it passes over them. Then the Edelweiss and the Lammie's Lug (Stachys lanata) are entirely covered with white cotton-woolly hairs: these are intended to keep the water in the plant, and do so as effectually as a rough woollen coat will keep out rain and mist. Silky hairs, downy hairs, and others are found wrapping up the tiny baby leaves in the bud: they probably keep them warm, and perplex and ward off objectionable insects.

But, perhaps, the sticky or glutinous hairs are the most wonderful of all. They are found on many plants, such as Salvia glutinosa,153 Plumbago, and Catchfly. One can see insects stuck on them and vainly struggling to be free, and the hairs undoubtedly prevent green-fly and other such pests from interfering with the honey of the flower. In some of these cases it has been shown that the body of the insect is actually used as food, but that is more obvious with two interesting plants which specially devote themselves to the capture of insect prey. One of these is very often kept in the Boer farmhouses near Tulbagh, in South Africa, simply to attract the flies, which are a perfect pest in those dry valleys. Another Drosophyllum, the Fly-Catcher, grows on sandy and rocky ground in Portugal and Morocco. This is also used by the peasants near Oporto as a convenient fly-paper.

In both of these plants large drops of a sticky, glistening liquid are secreted by the hairs which cover the leaves. Any small insect alighting on the latter is sure to get covered by the liquid, and in trying to get away will become hopelessly involved in it. It is probably soon suffocated, for the gummy matter will choke the small air-holes by which it breathes. Both these plants are said to secrete both an acid and a digestive secretion.

But we have two plants which are even more interesting in this country.

Walking over the rough marshy pastures or moors of Scotland one is sure to notice, generally on wet peaty and barren soil, a little rosette of bright, yellow-green, glistening leaves. If it is the right season there will be a handsome purple flower whose stalk springs from them. This is the Butterwort (Pinguicula), and it is not a bad name, for the leaves remind one of butter. The whole upper surface of the leaves is covered with tiny glands secreting a sticky, glistening matter. It is said that there will be as many as fifty thousand of these glands on a square inch of the upper surface.

Now in such places every one knows that there are quantities of midges, and also that these insects are always exceedingly thirsty. They prefer blood, it is true, but when they see these bright yellowish leaves they naturally go to them. When, however, the midge touches the leaf, the sticky liquid clings to its wings and legs, and it cannot escape.

So far this does not differ from the Fly Catchers mentioned above, but another very curious action then begins. If the midge or fly is near the margin of the leaf, the edge of the latter begins to curl or roll inwards over it. It does so very slowly, and may not finish rolling over the insect for some hours. Whilst this is going on acids and "gastric juice," or ferments which act in the same way, are being poured over the body of the midge, which is finally completely digested. Next day, having finished the midge, the leaf majestically unrolls itself again and waits for another.

The juice contains rennet, and is used by the Lapps in making a horrible delicacy called Tätmiölk. It has also been used by the Swiss shepherds for at least two hundred years, to cure sores on cows' udders.

The other British plant is the Sundew (Drosera). Every one who has been on peat-mosses and moors probably knows its little reddish rosettes of small rounded or spoon-shaped leaves lying on bare peat or wet mossy ground. Each leaf seems to be covered by hundreds of glittering little dewdrops (whence the name).

The hairs or tentacles which cover the leaf secrete this glistening, sticky fluid. There must be about two hundred of them on a single leaf.

An insect flying about near the Sundew is sure to be attracted by the conspicuous glittering, reddish leaves, and probably alights upon it. Then it finds itself caught and begins to struggle, but this simply brings it against more tentacles.

Now happens the most wonderful part of the whole performance. All the neighbouring tentacles, although they have not been touched, bend over towards the struggling insect and pin it down in the middle of the leaf. They do not bend over very quickly. In two or three minutes they will bend over towards it through an angle of forty-five degrees, and it takes them ten minutes to bend over ninety degrees.

There is something rather horrible in the sight of a large insect struggling with these slow, remorseless, well-aimed tentacles; most people free the insect unless, at least, it happens to be a midge. The point which is so difficult to understand is to know how those untouched tentacles know that the insect is there and exactly where it is. There is no doubt that they do know, for they behave exactly as if they were the arms of a spider.

If you put two insects on either side of the middle of the leaf, half the tentacles will pin down one and the other half will deal with the other insect.

At the same time acids and ferments are poured out which digest the insect. It takes about two days for a leaf to finish off an insect, and then the tentacles again unclose.

Moreover it is difficult to deceive those tentacles. They will bend in for the tiniest piece of useful substance; for instance, a length of one-seventy-fifth of an inch of woman's hair will make them secrete digestive fluid. One millionth part of a pound of ammonium phosphate will also produce secretion. But a shower of heavy rain, grains of sand, or other useless material, will not cause any secretion, and even if they do bend in a little, they soon discover their mistake and stand out again. If you try the same experiment under a bell-glass from which the oxygen has been withdrawn by an air-pump, nothing happens; or if you chloroform the Sundew it will pay no attention to small pieces of meat until it recovers from the effects of the chloroform.

When these Droseras are taken to a greenhouse and experiments are made on them, they run into very great danger. They are almost certain to die of overfeeding or indigestion. It is impossible to keep people from giving them too much to eat.

This wonderful little plant shows quite distinctly that there must be some way of sending messages in its leaves. Somehow the message travels from the tentacle which the fly has touched, down the stalk into the leaf, and up into the other tentacles, and tells them that there is something worth stooping for.

No one has explained this, and probably no one will ever do so.

The last, and in some ways the most interesting, of all these carnivorous plants is Venus' Fly-trap (Dionæa muscipula), which grows in North America from Rhode Island to Florida.

It is a quite small herb with a small circle of leaves which lie flat on the ground. Each leaf ends in a nearly circular piece which is divided by a very marked midrib. The two semicircular halves have a series of teeth along their edges; these margin teeth are stiff and a little bent upwards. In the centre of each half there are three small hairs. On looking closely at these hairs one finds that each has a joint near the base; all over the centre of these leaf halves there are scattered glands which secrete ferments intended to digest any animal matter.

The really interesting point is connected with these central jointed or trigger hairs; they are extremely sensitive. But when they are touched it is not they themselves that are affected, but the entire circular end of the leaf!

Suppose an insect wanders on to the leaf and reaches one of these semicircular halves, nothing happens until it touches one of these hairs, but then both halves suddenly close together, exactly like an ordinary rat-trap! The teeth on the edges of the halves interlock like the teeth of a trap, and the insect is caught and imprisoned.

Its body is slowly digested away and goes to nourish the plant. The use of the joint in the sensitive hairs can be easily perceived, for when the two halves shut up together, the hairs fold down exactly like the funnel of a river steamboat when it passes under a bridge.

The closing of the two halves, which has been well compared to shutting up a half-open book, is very quick, as it does not take more than ten to thirty seconds. There is an abundant flow of "gastric juice," but the leaf takes a long time to digest its food. It may require three weeks to finish one insect. Moreover, if overfed, it may turn a bilious or dyspeptic yellow colour, and wither or even die. It only shuts for a short time if a grain of sand touches the sensitive hair, and, like Drosera, is not deceived in its food.

The Dionæa, Drosera, the Sensitive Plant, Mimulus, Barberry, and others, all show us clearly that plants somehow or other act as if they were conscious of what they ought to do. In fact, in all these cases, it is scarcely possible to help believing in some sort of rudimentary nervous system. At any rate Wordsworth comes near this belief, for he has written: —

 
"It is my faith, that every flower that blows
Enjoys the air it breathes."
 
148.Groom, Ann. Bot., 1903, p. 223.
149.Kerner, Natural History of Plants. Many details are taken from this work in the present chapter.
150.Dennett.
151.Green, Vegetable Physiology, p. 203.
152.Annals Botany, vol. 3, p. 253, and vol. 6, p. 401.
153.Macchiati, Botan. Centralblatt, 41, 190.
Возрастное ограничение:
12+
Дата выхода на Литрес:
11 августа 2017
Объем:
382 стр. 5 иллюстраций
Правообладатель:
Public Domain

С этой книгой читают

Новинка
Черновик
4,9
176