Читать книгу: «Супермухи. Удивительные истории из жизни самых успешных в мире насекомых», страница 3

Шрифт:

Когда ученые внимательно изучили, как летают комары, то обнаружили кое-что новое. При помощи восьми камер замедленной съемки удалось рассмотреть полет под различными углами и создать трехмерную модель движений крыльев писклявого насекомого, степень подвижности которых ничтожные 40°, что почти вдвое меньше, чем у пчелы. Этого поверхностного движения должно быть недостаточно, чтобы комар летал, используя только разгонный вихрь (воздушный карман, который помогает создавать подъемную силу). Благодаря камерам удалось разглядеть второй вихрь на задней части крыльев. Поскольку задняя линия крыла повторяет траекторию передней, она улавливает вихревой след предыдущего взмаха, повторно используя энергию. Это обеспечивает дополнительный подъем, за счет которого комар и доставляет нам неприятности. Благодаря второму вихрю энергия экономится за счет уменьшения размера траектории, которую должно пройти каждое крыло. При скорости 700 ударов в секунду это дает значительную экономию.

Полеты с высоким КПД позволяют мухам мигрировать на удивительно далекие расстояния, как, например, мармеладная муха-журчалка. Миллионы таких мух дважды в год пролетают над швейцарскими Альпами во время путешествия туда и обратно из Северной в Южную Европу. Основываясь на наблюдениях за массовыми миграциями насекомых с воздуха, английский генетик из Университета Эксетера Карл Уоттон предположил, что миллиарды журчалок различных видов ежегодно мигрируют по всей Европе нескончаемым потоком крошечных тел, сверкающих на фоне гор. При попутном ветре они летят высоко, при встречном – низко. «Они летят быстро… и не останавливаются, – говорит Уоттон. – Бабочки снуют по кругу, как в барабане стиральной машины, но журчалки просто пролетают прямо над нами»54.

Датчики движения

Картинка в поле зрения летающих организмов меняется очень быстро, поэтому хорошее зрение им необходимо, за исключением разве что летучих мышей, обладающих эхолокацией. Глаз насекомого существенного отличается от нашего. Глаз позвоночного состоит из одной секции, а у насекомого – из многочисленных фасеток, вместе составляющих шестиугольники, напоминающие соты. Каждая фасетка, или омматидий, – полностью функционирующий орган зрения, независимо посылающий сигнал в мозг. Фасетки глаз насекомого обладают шириной обычно около 10 мкм, то есть на булавочной головке одновременно их уместится около 20 000.

Такая структура предполагает, что то, что видит насекомое, представляет собой мозаику из взаимосвязанных маленьких изображений. Да, именно так было написано в учебнике по энтомологии для студентов, где приводилась схематичная иллюстрация. Это была довольно расплывчатая картинка в стиле пуантилизма, заставившая меня задуматься о необходимости шлема на случай, если мне придется лететь по жизни с таким плохим зрением. Однако, судя по поведению насекомых, включая мух, кажется, что видят они куда лучше, и сейчас уже достоверно известно, что мозг насекомых интегрирует отдельные сигналы от каждого омматидия в одно целое точно так же, как наш мозг объединяет изображения из наших двух глаз в одно. Сложный глаз насекомого55 послужил источником вдохновения для исследований и разработки камер видеонаблюдения с датчиком движения, которыми пользуются военные.

У мух есть группы нейронов, работающие согласованно, и они прекрасно справляются с проблемами со зрением на клеточном уровне. Чувствительные к движению нейроны отслеживают оптический поток объектов, перемещающихся в поле зрения мухи, помогая ей поддерживать курс полета. Другой набор нейронов использует оптический поток для контроля самопроизвольных движений. Третий набор нейронов, по-видимому, анализирует визуальное содержание ситуации, например отделяет фигуры от фона путем обнаружения относительного движения среды. Этот процесс называется параллаксом движения. Три однофасеточных глазка, светочувствительных органа, расположенные на макушке головы и полностью отделенные от глаз, улавливают изменения интенсивности света, и муха быстро реагирует на приближение объекта.

У многих мух есть более приземленный способ справиться с потоком зрительной информации, вызванным быстрым полетом: они бросают несколько быстрых косых взглядов. Например, синие падальницы, или синие мясные мухи, перемещают взгляд благодаря быстрым, прерывистым поворотам тела и головы (саккадам), удерживая его более или менее неподвижным между саккадами. (Наши с вами зрительные органы производят подобные саккады56, когда мы смотрим в окно движущегося автомобиля или бежим; глаза ненадолго фиксируются на ближайшем объекте, затем переходят к другому, при этом глаз совершает быстрое движение из стороны в сторону.) Из-за быстрых движений поток зрительной информации между саккадами проходит почти плавно и поступательно, и муха получает информацию о пространственном расположении объектов окружающей среды. Я помню, как испытал легкое волнение, когда в первый раз заметил, что муха внезапно посмотрела в сторону. Взгляд показался мне таким целеустремленным, я даже не удивился бы, если от ее взгляда проезжающие машины остановились бы как вкопанные.

Исследования плодовых мушек, глаза которых состоят из скромных почти шестисот фасеток каждый, показали, что они используют визуальную систему приоритизации. Статичные объекты остаются размытыми, при этом все движущиеся, независимо от зрительных изменений, вызванных движениями самой мухи, находятся в четком фокусе. Как пишет Питер Воллебен в книге The Inner Life of Animals («Духовный мир животных»): «Можно сказать, что эти крошки видят самую суть вещей, и, конечно, вы не ожидали этой способности от маленьких мух»57. Мы делаем почти то же самое. Читая эту книгу, посредством периферийного зрения вы замечаете многое на странице и за ее пределами, но вы не фокусируетесь на этом. Даже слова, находящиеся всего в нескольких сантиметрах от тех, которые вы читаете в данный момент, размыты. То есть наше зрение работает подобно разуму, который в любой конкретный момент может думать только о чем-то одном.

Профессор биоинженерии Калифорнийского технологического института Майкл Дикинсон и аспирант Гвинет Кард рассмотрели изображение плодовых мушек, которых вот-вот должны были прихлопнуть мухобойкой, сделанное в высокоскоростном цифровом режиме. Ученые определили, что крошечный мозг насекомого вычисляет местоположение надвигающейся угрозы, разрабатывает план побега и ставит ноги в оптимальное положение, чтобы отпрыгнуть в сторону. Все это происходит примерно в течение одной десятой доли секунды после того, как муха замечает мухобойку. После тщательно контролируемых экспериментов, снятых замедленной съемкой58, где использовался черный диск («мухобойка») диаметром 14 см, любопытные ученые отметили, что мухи объединяют визуальную информацию, полученную из обзора практически на 360° с механосерсорными данными от собственных ног, что помогает им уйти от надвигающейся угрозы, толкая среднюю пару ног по направлению к ней. Если муха осознанно переживает подобный опыт (см. следующую главу), можно добавить, что мысль о побеге сопровождается эмоцией страха.

Если вы хоть раз пытались прихлопнуть муху, вы помните, насколько это сложно, и понимаете, как хорошо им служит зрение. Когда я был подростком и дежурил на кухне в летнем лагере, то придумал довольно эффективную технику ловить домашних мух голыми руками. Когда муха сидела на плоской поверхности, такой как столешница или вертикальная деревянная балка, я медленно придвигал руку «со спины» мухи (осторожно, на деревянных поверхностях могут быть занозы!). Как только моя рука оказывалась в 10–12 см от цели, я останавливался, чтобы собраться с духом перед атакой, а затем с максимально возможной скоростью накрывал муху рукой. Чаще всего моя жертва взлетала в воздух до того, как я касался ее ладонью, и тогда у меня не было времени среагировать на ее движения. Но если я действовал достаточно быстро, а муха располагалась удобно, то насекомое оказывалось в ловушке. На пике мне удавалось достичь показателя улова в 60 %, и в редких случаях я даже ловил двух мух за один удар. Мухи увлекали меня всю жизнь, поэтому я выпускал их на свободу, где их ждала лучшая участь, чем липкие полоски, свисающие с потолка. Обычно я чувствовал, как моя пленница мечется в кулаке, но не всегда. Много раз я либо случайно выпускал хитрую муху обратно на кухню, потому что думал, что промахнулся, либо осторожно раскрывал ладонь, но там никого не было.

Говоря о разнице между самцами и самками, важно отметить, что отличия в физических характеристиках между ними обычно имеют отношение к размножению. В соответствии с этим принципом у самцов многих видов мух, как правило, большие глаза, сходящиеся на средней линии. Подобные голоптические глаза обеспечивают практически 360-градусный обзор, что оптимально для поиска самок. Есть особо экстремальные примеры, такие как большеглазки: у них глаза занимают большую часть головы, и она выглядит раздутой. У большинства самок, за редким исключением, дихоптические глаза, и они не соединены вместе. Интересно, выдерживают ли самцы с более продвинутым органом зрения больше нападений хищников, чем самки, или же их визуальное преимущество компенсируется меньшей маневренностью59.

Если у голоптического зрения и есть еще один недостаток, так это возможное нарушение бинокулярного зрения. Глаза мух-ктырей хорошо разделены, поэтому они обладают бинокулярным зрением, благодаря которому они хорошо воспринимают расстояние. Это имеет решающее значение для координации при атаках летающей добычи и, вероятно, для обнаружения приближающегося хищника и возможности сбежать от него. Я понял, что, только очень медленно двигаясь, могу подобраться на расстояние вытянутой руки к сидящей мухе-ктырю (подробнее о них в четвертой главе).

Хорошее зрение, и не важно, голоптическое или нет, еще ни разу не пошло на пользу домашней мухе, бьющейся в окно. Стеклянный барьер полностью сбивает с толку насекомое, привыкшее ориентироваться на визуальные раздражители. Муха никогда не сталкивается со стеклом в природе, поэтому она видит только пейзаж за окном и не в состоянии преодолеть желание приблизиться к нему. Насколько я знаю, никто не пытался выяснить, приспосабливаются ли мухи к окнам или другим искусственным предметам.

Как мухи чувствуют вкус

Мухи летают из пункта А в пункт В, причем пункт В – часто источник пищи. Иногда кажется, что мухи довольно привередливы в еде, однако органы, при помощи которых мухи чувствуют вкус, говорят об обратном. Как и в случае с обонянием, чтобы распознать вкус, нужно включить хеморецепцию, но вкус отличается от обоняния тем, что требует физического контакта с веществом. Органы, необходимые мухам для восприятия вкуса, в отличие от наших органов с аналогичной функцией, не ограничиваются ротовой полостью. Помимо хоботка, через который они всасывают пищу, вкусовые рецепторы мух расположены на щетинках, разбросанных по всему телу, включая ноги, крылья и яйцеклад. Интереснее всего то, что вкусовые органы находятся даже на мягких подушечках лап. Я подозреваю, что большинству людей не приходило в голову, что можно хотеть иметь возможность пробовать пищу ногами, разве что тем, кто топчет виноград при традиционном виноделии. Но эта способность позволяет мухе понять, можно ли поживиться, сев на спелый банан, руку или столешницу.

Хоботок домашней мухи – чудо с точки зрения строения и функции (© Susumu Nishinaga/Science Source)


Если рассматривать губчатый хоботок домашней мухи очень крупным планом, он представляет собой орган, отдаленно напоминающий цепкий кончик хобота слона. Встроенный «пылесос» покрыт похожими на рубчики каналами, через которые всасывается жидкая пища, после чего она попадает в горло. При этом у «пылесоса» есть механизм обратного хода: через те же каналы слюна капает на потенциальную еду, растворяя твердые предметы до формы, пригодной для всасывания.

Похожая на губку нижняя губа позволяет большинству мух сначала сделать сладкую или просто вкусную для мух пищу жиже, а затем поглотить ее. Это может быть сухая медвяная роса, разбрызганная по поверхности листьев другими насекомыми, которым свойственно ее собирать. Специалист по мухам Стивен Маршалл подозревает60, что мухи питались этим вездесущим источником нектара задолго до того, как цветы эволюционировали и начали его производить. Современные мухи в 100 раз более чувствительны к вкусу сахара, чем мы61.

Как же мухи чувствуют вкус? Тщательное изучение плодовых мушек показало, что у них эту задачу выполняют лапки. Они чувствительны к вкусу благодаря крошечным тонким, похожим на волоски, ворсинкам, каждая из которых заканчивается порой. В каждой поре находятся отдельные нейроны, чувствительные к различным группам химических веществ62. Эти и соседние нейроны передают сигналы в мозг мухи.

Прежде чем муха съест потенциальную пищу, еда должна пройти два теста на вкус. Если вещество, попавшееся на пути мухе, например капля варенья или лужица воды, проходит вкусовой тест ног, то мозг мухи отдает команду вытянуть хоботок. Однако муха не поглощает вещество до тех пор, пока оно не пройдет второй тест с помощью сенсорных волосков на кончике хоботка. Эти волоски полые, и на кончике каждого есть отверстие, внутри которого находятся пять клеток. Две из них чувствительны к соленому, одна – к воде, и одна – к сахару. Пятая клетка не участвует в определении вкуса63; она служит для того, чтобы обнаруживать поверхностное сопротивление и упругость по изгибу, возникающему, когда муха ставит лапку. При тщательном подсчете количества чувствительных к вкусу волосков у мясной мухи (Phormia regina) обнаружили, что на передней ноге их 308, на средней ноге – 208, 107 на задней ноге, плюс 250 на хоботке. Кроме того, есть 132 химически чувствительных сосочка (маленькие выступы, похожие на пальцы). То есть у мухи есть в общей сложности около 1600 вкусовых датчиков.

Несмотря на сотни миллионов лет сегрегации в ходе эволюции, восприятие вкуса у мух работает довольно похожим на наш образом. Поведенческие и генетические исследования, проведенные Кристин Скотт из Калифорнийского университета в Беркли, показали, что у плодовых мух есть рецепторы, предназначенные для определения сладкого и горького, как и у людей. И, как и у нас, устройство детекторов вкуса у мух проще, чем детекторов запахов; органы обоняния различают гораздо более тонкие оттенки. Еще одна особенность восприятия вкуса, свойственная и мухам, и человеку, заключается в том, что они тонко настроены на свое внутреннее состояние. По словам Скотт, «животные динамически регулируют процесс поглощения пищи, уравновешивая потребление калорий и расход энергии»64. Проще говоря, сытая муха не интересуется едой.

Обоняние и слух

Как и следовало ожидать от существ, способных ощущать вкус разными частями тела, мухи хорошо чувствуют запахи. Запах они ощущают усиками, многофункциональными тонкими щупиками, покрытыми хеморецепторами. Усики чрезвычайно чувствительны к целому ряду химических сигналов и реагируют на запахи в гораздо более низких концентрациях, чем мы. Некоторые мухи-падальщики способны обнаружить гниющую тушу на расстоянии более 15 км.

Большая часть исследований обоняния мух касалась двух основных аспектов связи мухи и человека: кровопийц, распространяющих болезни, и вредителей сельского хозяйства. Кровососущие мухи питаются химическими веществами, выделяемыми их источником пищи, как и мухи, питающиеся растениями. Обонятельные рецепторы, расположенные на усиках, специализированы для обнаружения химических веществ, характерных для того, чем или кем они питаются: от экскрементов до тюльпанов, в зависимости от типа мухи. Выбор химических веществ огромен. Человеческий запах состоит из 300–500 компонентов, в зависимости от того, кого вы нюхаете (и когда). Исследовательская группа из Университета Джона Хопкинса работает над выявлением специфических компонентов человеческого запаха, воспринимаемых обонятельными центрами мозга комара Aedes aegypti, главного переносчика вируса Зика. У этой мухи есть три обонятельных органа с тремя группами рецепторов, заточенных на реагирование на запах человека. План состоит в том, чтобы разработать искусственный химический аромат, имитирующий запах человека, который можно было бы использовать в качестве ловушки для комаров, чтобы контролировать переносчиков инфекции и предотвратить распространение вируса Зика и другие болезни. Уже существует устройство, называемое магнитом от комаров, в котором для привлечения, ловли и уничтожения комаров используется углекислый газ65.

Есть еще одна сенсорная функция универсальных усиков мух: слух. Как и люди, мухи различают разные частоты. Механика слуха мухи включает в себя невероятный каскад реакций, начиная с обнаружения колебаний воздуха (звуков) дистальными отделами усиков и заканчивая нервными сигналами, передаваемыми в мозг. Каскад начинается с очень, очень небольшого отклонения усиков: на несколько 10-тысячных ширины волоса. Это заставляет растягиваться нижележащие сенсорные клетки, благодаря чему открываются ионные каналы, через которые проникают заряженные молекулы, вызывая электрический импульс. В этот момент в игру вступает механический усилитель, своего рода двигатель, который усиливает эффект отклонения. Если муху стимулировать с определенной частотой, чувствительность к этой частоте увеличивается с каждым колебанием, как при толчке качелей на детской площадке. Более низкие звуки предполагают большее расширение66.

Слухом мухи обычно пользуются во время ухаживания, и считается, что большинство мух, не использующих звук при ухаживании, глухие. Ухаживания плодовых мушек – довольно громкий процесс. Для привлечения самки самцы «поют» песни, генерируемые быстрыми колебаниями крыльев. Исследования, проведенные в Университете Айовы, показали, что слух плодовых мушек ухудшался, если их подвергали воздействию громкого шума, подобного тому, который создается на рок-концерте. Такое воздействие приводило к структурному повреждению нервных клеток, отвечающих за слух. Как и у людей, слух у мух восстанавливался через неделю. Длительное воздействие высоких децибелов на человека приводит к постоянной потере слуха67. Однако ввиду куда более короткой продолжительности взрослой жизни мухи, она менее уязвима, даже если невольно оказывается на концерте группы Metallica.

Мастера адаптации

Учитывая невероятное разнообразие мух, а также их приспособленность к окружающему миру, можно смело назвать их оппортунистами эволюции. В следующих главах мы увидим, что мухи разработали невероятное количество оригинальных решений проблем, связанных с выживанием в сложном мире. Великий писатель и юморист Марк Твен восхищался мухой, которая большую часть времени проводит под водой в озере Моно, штат Калифорния. При помощи воскового волосатого панциря крошечная муха-береговушка Ephydra hians задерживает воздух, благодаря чему ныряет на дно и питается водорослями. Твен радовался тому, что ему не удалось утопить мух, о чем написал в путевых мемуарах Roughing It («Налегке»): «Можно держать их под водой столько, сколько вам заблагорассудится, они совершенно не против, более того, только гордятся этим. Когда вы отпускаете их, они всплывают на поверхность сухими, как бухгалтерский отчет».

Эти мухи образуют вокруг себя пузырь, надавливая определенным образом на поверхность воды. Они ползут головой вперед, пока на озере не образуется своего рода углубление. По мере того как «вмятина» становится глубже, давление окружающей воды достигает порогового значения, и оно внезапно поглощает муху, которая оказывается внутри серебристого воздушного кармана. Когтистые лапы и ротовая часть мухи свободны от пузырьков воздуха, что позволяет насекомому скользить по дну. За исключением солоноводных креветок, эта муха – едва ли не единственный организм, обитающий в высокощелочном озере. «Они отлично приспособились, ведь в озере нет рыбы», – говорит Майкл Дикинсон68, который не так давно описал удивительное поведение мухи, а точнее, более чем через столетие после того, как Твен осыпал ее комплиментами.

С 1940-х годов озеро становится все более соленым. Но, несмотря на это, после отвода в Лос-Анджелес нескольких пресноводных ручьев, которые ранее впадали в Моно, мухи сохранились. Они летают большими стаями, привлекая полчища чаек, которые носятся через них с разинутыми клювами. Мух так много, что они способны поддерживать местную экосистему, привлекающую около 2 млн птиц более 300 видов, каждую весну мигрирующих на озеро Моно. Здесь они находят пищу и размножаются. Все новые отводы воды уменьшают площадь озера, повышая концентрацию карбоната натрия до опасно высоких уровней, даже для мухи. Другая угроза заключается в том, что после купающихся в озере вода содержит остатки солнцезащитного крема69; он смывает восковую оболочку мухи, и без нее муха тонет.

Было бы грустно видеть, как их количество сокращается, однако стоит отметить, что мухи способны эволюционировать быстрее человека. Неудивительно, что именно мухи столь разнообразны и так успешно процветают на Земле, учитывая, что за одно наше поколение у мух их сменяется 500. Это важный урок, касающийся нашей способности адаптироваться к антропогенным изменениям, к чему вернемся в заключительной главе.

54.Witze 2018.
55.Pomerleau 2015.
56.Blaj and van Hateren 2004; Kern et al. 2006.
57.Wohlleben 2017, p. 23.
58.Card and Dickenson 2008.
59.Тем не менее самки несут в себе еще и яйца, поэтому могут быть зачастую менее маневренными, чем самцы.
60.Marshall 2012.
61.Sverdrup-Thygeson 2019.
62.Shanor and Kanwal 2009.
63.Barth 1985.
64.K. Scott.
65.http://www.mosquitomagnet.com/advice/how-it-works
66.http://www.bernstein-network.de/en/news/Forschungsergebnisse-en/fliegenhoeren
67.Galluzzo 2013.
68.Guarino 2017.
69.Pennisi 2017.
Возрастное ограничение:
18+
Дата выхода на Литрес:
23 октября 2023
Дата перевода:
2023
Дата написания:
2021
Объем:
409 стр. 32 иллюстрации
ISBN:
978-5-389-24288-3
Переводчик:
Правообладатель:
Азбука-Аттикус
Формат скачивания:
epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip

С этой книгой читают