Читайте только на ЛитРес

Книгу нельзя скачать файлом, но можно читать в нашем приложении или онлайн на сайте.

Читать книгу: «Inventions in the Century», страница 2

Шрифт:

Different parts of the plough, such as the share and coulter, were constructed of iron, but the general practice among farmers was to make the beam and frame, handles and mould board of strong and heavy timber. The beam was straight, long, and heavy, and that and the mould generally hewed from a tree. The mould board on both sides to prevent its wearing out too rapidly was covered with more or less thick plates of iron. The handles were made from crooked branches of trees. "The beam," it is said, "was set at any pitch that fancy might dictate, with the handles fastened on almost at right angles with it, thus leaving the ploughman little control over his implement which did its work in a very slow and imperfect manner." It was some such plough that Lord Kames complained about in the Gentleman Farmer in 1768, as being used in Scotland – two horses and two oxen were necessary to pull it, "the ridges in the fields were high and broad, in fact enormous masses of accumulated earth, that could not admit of cross ploughing or cultivation; shallow ploughing universal; ribbing, by which half the land was left untilled, a general practice over the greater part of Scotland; a continual struggle between the corn and weeds for superiority." As late as 1820 an American writer was making the same complaint. "Your furrows," he said, "stand up like the ribs of a lean horse in the month of March. A lazy ploughman may sit on the beam and count every bout of his day's work; besides the greatest objection to all these ploughs is that they do not perform the work well and the expense is enormous for blacksmith work." It was complained by another that it took eight or ten oxen to draw it, a man to ride upon the beam to keep it on the ground, and a man followed the plough with a heavy iron hoe to dig up the "baulks."

The improvements made in the plough during the century have had for their object to lessen the great friction between the wide, heavy, ill-formed share and mould board, and the ground, which has been accomplished by giving to the share a sharp clean tapering form, and to the mould board a shape best calculated to turn the furrow slice; to improve the line of draught so that the pull of the team may be most advantageously employed, which has been effected after long trials, study and experiment in the arrangement of beam, clevis and draft rod, setting the coulter at a proper angle and giving the landside a plane and parallel surface; to increase the wear and lessen the weight of the parts, which has been accomplished by ingenious processes in treating the metal of which the parts are composed, and lessening the number of parts; to render the plough easily repairable by casting the parts in sets and numbering them, by which any part may be replaced by the manufacturer without resort to the blacksmith. In short there is no part of the plough but what has received the most careful attention of the inventor. This has been evidenced by the fact that in the United States alone nearly eleven thousand patents on ploughs were issued during the nineteenth century. When it is considered that all the applications for these patents were examined as to their novelty, before the grant of the patent, the enormous amount of study and invention expended on this article can be appreciated. Among the century's improvements in this line is the use of disks in place of the old shovel blades to penetrate the earth and revolve in contact therewith. Cutting disks are harnessed to steam motors and are adapted to break up at one operation a wide strip of ground. The long-studied problem of employing a gang of ploughs to plough back and forth and successfully operated by steam has been solved, and electricity is now being introduced as a motor in place of steam. Thus millions of broad acres which never would have been otherwise turned are now cultivated. The tired muscle-strained ploughman who homeward plodded his weary way at night may now comfortably ride at his ease upon the plough, while at the same time the beasts that pull it have a lighter load than ever before.

Next to the plough among the implements for breaking, clearing and otherwise preparing the soil for the reception of seed, comes the harrow. From time immemorial it has been customary to arm some sort of a frame with wooden or iron spikes to scratch the earth after the ploughing. But this century has greatly improved the old constructions. Harrows are now found everywhere made in sections to give flexibility to the frame; collected in gangs to increase the extent of operation; made with disks instead of spikes, with which to cut the roots of weeds and separate the soil, instead of merely scratching them. A still later invention, curved spring teeth, has been found far superior to spikes or disks in throwing up, separating and pulverising the soil. A harrow comprising two ranks of oppositely curved trailing teeth is especially popular in some countries. These three distinct classes of harrows, the disk type, the curved spring tooth type, and gangs of sections of concavo-convex disks, particularly distinguish this class of implements from the old forms of previous ages.

CHAPTER III.
AGRICULTURAL IMPLEMENTS

It is wonderful for how many generations men were contented to throw grain into the air as the Parable relates:

"Behold, a sower went forth to sow, and when he sowed some seeds fell by the way side, and the fowls came and devoured them up: some fell on stony places where they had not much earth, and forthwith they sprung up, because they had no deepness of earth; and when the sun was up they were scorched; and because they had no root they withered away. And some fell among thorns and the thorns sprung up and choked them. But others fell into good ground and brought forth fruit, some a hundredfold, some sixtyfold, and some thirtyfold."

Here are indicated the defects in depositing the seed that only the inventions of the century have fully corrected. The equal distribution of the seed and not its wide scattering, its sowing in regular drills or planting at intervals, at certain and uniform depths, the adaptation of devices to meet the variations in the land to be planted, and in short the substitution of quick, certain, positive mechanisms for the slow, uncertain, variable hand of man. Not only has the increase an hundredfold been obtained, but with the machines of to-day the sowing and planting of a hundredfold more land has been made possible, the employment of armies of men where idleness would have reigned, and the feeding of millions of people among whom hunger would otherwise have prevailed. Not only did this machinery not exist at the beginning of the century, but the agricultural machines and devices in this line of the character existing fifty years ago are now discarded as useless and worthless.

It is true that, as in the case of the ploughs, attempts had been made through the centuries to invent and improve seeding implements. The Assyrians 500 years B. C. had in use a rude plough in which behind the sharp wooden plough point was fixed a bowl-shaped hopper through which seed was dropped into the furrow, and was covered by the falling back of the furrow upon it. The Chinese, probably before that time, had a wheelbarrow arrangement with a seed hopper and separate seed spouts. In India a drilling hopper had been attached to a plough. Italy claims the honour among European nations of first introducing a machine for sowing grain. It was invented about the beginning of the seventeenth century and is described by Zanon in his Work on Agriculture printed at Venice in 1764. It was a machine mounted on two wheels, that had a seed box in the bottom of which was a series of holes opening into a corresponding number of metal tubes or funnels. At their front these tubes at their lower ends were sharpened to make small furrows into which the seed dropped.

Similar single machines were in the course of the seventeenth and eighteenth centuries devised in Austria and England. The one in Austria was invented by a Spaniard, one Don Joseph de Lescatello, tested in Luxembourg in 1662. The inventor was rewarded by the Emperor, recommended to the King of Spain, and in 1663 and 1664 his machines were made and sold at Madrid. The knowledge of this Spaniard's invention was made known in England in 1699 by the Earl of Sandwich and John Evelyn. Jethro Tull in England shortly after invented and introduced a combined system of drilling, ploughing and cultivating. He sowed different seeds from the same machine, and arranged that they might be covered at different depths. Tull's machines were much improved by James Cooke, a clergyman of Lancashire, England; and also in the last decade of the eighteenth century by Baldwin and Wells of Norfolk, England.

Washington and others in America had also commenced to invent and experiment with seeding machines. But as before intimated, the nineteenth century found the great mass of farmers everywhere sowing their wheat and other grains by throwing them into the air by hand, to be met by the gusts of wind and blown into hollows and on ridges, on stones and thorny places, – requiring often a second and third repetition of the same tedious process.

In 1878 Mr. Coffin, a distinguished journalist of Boston, in an address before the Patent Committee of the U. S. Senate, set forth the advantages obtained by the modern improvements in seeders as follows:

"The seeder covers the soil to a uniform depth. It sows evenly, and sows a specific quantity. You may graduate it so that, after a little experience, you can determine the amount per acre even to a quart of wheat. They sow all kinds of grain, – wheat, clover, and superphosphate, if need be, at once. They harrow at the same time. They make the crop more certain. It is the united testimony of manufacturers and farmers alike that the crop is increased from one-eighth to one-fourth, especially in the winter wheat. Winter wheat, you are aware, in the freezing and thawing season, is apt to heave out. It is desirable to bury the seed a uniform and proper depth and to throw over the young plant such an amount of soil that it shall not heave with the freezing and thawing. Of the 360,000,000 bushels of wheat raised last year I suppose more than 300,000,000 was winter wheat. One-eighth of this is 37,700,000 bushels."

It would seem to many that after the adoption of a seed hopper, and spouts with sharpened ends that cut the drill rows in the furrows and deposited the seed therein, that little was left to be done in this class of inventions; but a great many improvements were necessary. Gravity alone could not be depended upon for feeding the seed. Means had to be devised for a continuous and regular discharge from each grain tube; for varying the quantity of the seed fed by varying the escape openings, or by positive mechanical movements variable in speed; for fixing accurately the quantity of seed discharged; for changing the apparatus to feed coarse or fine seed; and for rendering the apparatus efficient on different surfaces – steep hillsides, level plains, irregular lands.

An important step was the substitution of what is called the "force feed" for the gravity feed. There is a variety of devices for this purpose, the principle of one of them being a revolving feed wheel located beneath the hopper, and above each spout, the two casings between which the feed wheel revolves forming the outer walls of a complete measuring channel, or throat, through which the grain is carried by the rotary motion of the wheel, thus providing the means of measuring the seed with as much accuracy as could be done by a small measure. The quantity sown per acre is governed by simply increasing or diminishing the speed of the feed wheel. In one form of device this change of speed is altered by a system of cone gearing. A graduated flow of the seed has also been effected by the employment of a cylinder having a smooth and fluted part working in a cup beneath the hopper with provision for adjustment of the smooth part towards and from the fluted part to cut off or increase the flow.

To avoid the use of a separate apparatus for separate sizes of grain and other seed, the seed holder has been divided into parts – one part for containing wheat, barley and other medium-sized grains, and another for corn, peas and the larger seeds. And as these parts are used on separate occasions, the respective apertures are opened or closed by a sliding bottom and by a single movement of the hand.

Rubber tubes for conducting the seed through the hollow holes were introduced in place of the metal spouts that answered both as a spout and a hoe.

In place of the common hoe drill of a form used in the early part of the century, the hoes being forced into the soil by the use of levers and weights, what are known as "shoe drills" have largely succeeded. A series of shoes are pivoted to the frame, extend beneath the seed box, and are provided with springs for depressing or raising them.

All kinds of seeds and fertilisers, separately or together, may be now sown, and the broadcast sowing of a larger area than that covered by the throw of the hand can now be given by machinery.

Corn and cotton seed are thus also planted, mixed or unmixed with the fertilising material.

Not only have light ploughs been combined with small seed boxes and one or more seed tubes, for easy work in gardens, but the arrangements varied and graded for different uses until is reached that great machine run by steam power, in which is assembled a gang of heavy harrows in front to loosen and pulverise the soil, then the seed and fertilising drill of capacious width for sowing the grain in rows, followed by a lighter broad harrow to cover the seed, and all so arranged that the steam lifts the heavy frames on turning, and all controlled easily by the man who rides upon the machine.

In planting at intervals or in hills, as corn and potatoes, and other like larger seeds, no longer is the farmer required to trudge across the wide field carrying a heavy load in bag or box, or compel his boys or women folk to drop the seed while he follows on laboriously with the hoe. He may now ride, if he so choose, and the machine which carries him furnishes the motive power for operating the supply and cut-off of the grain at intervals.

The object of the farmer in planting corn is to plant it in straight lines about four feet apart each way, putting from three to five grains into each spot in a scattered and not huddled condition. These objects are together nicely accomplished by a variety of modern machines.

The planting of great fields of potatoes has been greatly facilitated by machinery that first slices them and then sows the slices continuously in a row, or drops them in separate spots or hills, as may be desired. The finest seeds, such as grass and clover, onion and turnip seed, and delicate seed like rice, are handled and sown by machines without crushing or bruising, and with the utmost exactness. Just what seed is necessary to be supplied to the machine for a given area is decided upon, and the machine distributes the same with the same nicety that a doctor distributes the proper dose of pellets upon the palm of his patient.

Transplanters as well as planters have been devised. These transplanters will dig the plant trench, distribute the fertiliser, set the plant, pack the earth and water the plant, automatically.

The class of machines known as cultivators are those only, properly speaking, which are employed to cultivate the plant after the crop is above the ground. The duties which they perform are to loosen the earth, destroy the weeds, and throw the loosened earth around the growing plant.

Here again the laborious hoe has been succeeded by the labour-saving machine.

Cultivators have names which indicate their construction and the crop with which they are adapted to be used. Thus there are "corn cultivators," "cotton cultivators," "sugar-cane cultivators," etc. Riding cultivators are known as "sulky cultivators" where they are provided with two wheels and a seat for the driver.

If worked between two rows they are termed single, and when between three rows, double cultivators. A riding cultivator adapted to work three rows has an arched axle to pass over the rows of the growing plants and cultivate both sides of the plants in each row. Double cultivators are constructed so that their outside teeth may be adjusted in and out from the centre of the machine to meet the width of the rows between which they operate. A "walking cultivator" is when the operator walks and guides the machine with the hands as with ploughs. Ordinary ploughs are converted into cultivators by supplying them with double adjustable mould boards. Ingenious arrangements generally exist for widening or narrowing the cultivator and for throwing the soil from the centre of the furrow to opposite sides and against the plant. The depth to which the shares or cultivator blades work in the ground may be adjusted by a gauge wheel upon the draught beam, or a roller on the back of the frame.

Disk cultivators are those in which disk blades instead of ploughs are used with which to disturb the soil already broken. As with ploughs, so with cultivators, steam-engines are employed to draw a gang of cultivating teeth or blades, their framework, and the operator seated thereon, to and fro across the field between two or more rows, turning and running the machine at the end of the rows.

Millet's recent celebrated painting represents a brutal, primitive type of a man leaning heavily on a hoe as ancient and woful in character as the man himself. It is a picture of hopeless drudgery and blank ignorance. Markham, the poet, has seized upon this picture, dwelt eloquently on its horrors, and apostrophised it as if it were a condition now existing. He exclaims,

 
"O masters, lords and rulers in all lands
How will the future reckon with this man?"
 

The present has already reckoned with him, and he and his awkward implement of drudgery nowhere exist, except as left-over specimens of ancient and pre-historic misery occasionally found in some benighted region of the world.

The plough and the hoe are the chief implements with which man has subdued the earth. Their use has not been confined to the drudge and the slave, but men, the leaders and ornaments of their race, have stood behind them adding to themselves graces, and crowning labor with dignity. Cincinnatus is only one of a long line of public men in ancient and modern times who have served their country in the ploughfield as well as on the field of battle and in the halls of Legislation. We hear the song of the poet rising with that of the lark as he turns the sod. Burns, lamenting that his share uptears the bed of the "wee modest crimson-tipped flower" and sorrowing that he has turned the "Mousie" from its "bit o' leaves and stibble" by the cruel coulter. The finest natures, tuned too fine to meet the rude blasts of the world, have shrunk like Cowper to rural scenes, and sought with the hoe among flowers and plants for that balm and strength unfound in crowded marts.

But the dignity imparted to the profession of Agriculture by a few has now by the genius of invention become the heritage of all.

While prophets have lamented, and artists have painted, and poets sorrowed over the drudgeries of the tillers of the soil, the tillers have steadily and quietly and with infinite patience and toil worked out their own salvation. They no longer find themselves "plundered and profaned and disinherited," but they have yoked the forces of nature to their service, and the cultivation of the earth, the sowing of the seed, the nourishment of the plant, have become to them things of pleasurable labour.

With the aid of these inventions which have been turned into their hands by the prolific developments of the century they are, so far as the soil is concerned, no longer "brothers of the ox," but king of kings and lord of lords.

Возрастное ограничение:
12+
Дата выхода на Литрес:
31 июля 2017
Объем:
500 стр. 1 иллюстрация
Правообладатель:
Public Domain

С этой книгой читают