Читать книгу: «Начало бесконечности. Объяснения, которые меняют мир», страница 9

Шрифт:

Неодарвинизм и знания

На своем фундаментальном уровне неодарвинизм не ссылается на что-либо биологическое. В его основе – идея репликатора (всего, что закономерно способствует копированию самого себя)19. Например, ген, дающий способность питаться определенным видом пищи, заставляет организм оставаться здоровым в некоторых ситуациях, когда при отсутствии его индивидуум бы ослаб или умер. Тем самым он повышает шансы организма произвести в будущем потомство, и эти потомки унаследуют и распространят копии гена.

Идеи также могут быть репликаторами. Например, таковым является хорошая шутка: когда она застревает в голове человека, его обычно тянет поделиться ею, таким образом шутка копируется в головы других людей. Идеи, являющиеся репликаторами, Докинз назвал мемами. Большинство идей репликаторами не является: они не заставляют нас передавать себя другим людям. Однако мемами (или мемокомплексами – наборами взаимодействующих мемов) являются практически все долгоживущие идеи, такие как языки, научные теории, религиозные верования, а также невыразимые состояния души, из которых составляются культуры, как то принадлежность к британцам или умение играть классическую музыку. О мемах я расскажу подробнее в главе 15.

Самая общая формулировка центрального утверждения теории неодарвинизма заключается в том, что популяция репликаторов, подверженных вариации (например, при неидеальном копировании), будет захвачена теми вариациями, которым лучше других удается добиться репликации себя. Это удивительная по глубине истина, которую часто критикуют либо за то, что она настолько очевидна, что ее и формулировать не стоит, либо за ложность. Все дело, как мне кажется, в том, что, хотя она самоочевидно верна, она не является самоочевидным объяснением конкретных адаптаций. Нашей интуиции больше нравятся объяснения в терминах функции или цели: что делает ген для своего носителя или его вида? Но, как мы только что видели, такую функциональность гены обычно не оптимизируют.

Итак, знания, заключенные в генах, – это знания о том, как добиться репликации за счет конкурирующих генов. Часто гены достигают этого, попутно наделяя свои организмы полезной функциональностью, и в таких случаях их знания включают в себя заодно и знания об этой функциональности. А функциональность, в свою очередь, достигается кодированием – в генах – закономерностей среды и иногда даже эмпирических приближений к законам природы, и в таких случаях в генах непреднамеренно прописываются и эти знания. Но подлинным объяснением наличия гена всегда является то, что он добился большего числа репликации себя самого по сравнению с генами-соперниками.

Подобным же образом могут эволюционировать и необъяснительные знания человека: эмпирические правила передаются следующим поколениям не полностью, а те, которые в итоге остаются, необязательно оптимизируют соответствующую функцию. Например, изящно зарифмованное правило запомнят и будут повторять скорее, чем более точное, но написанное прозой и нескладно. К тому же человеческие знания никогда не являются совершенно необъяснительными. Всегда есть как минимум фон допущений о реальности, по отношению к которому понимается то или иное эмпирическое правило, и этот фон может сделать правдоподобными некоторые ложные правила.

Эволюция объяснительных теорий протекает по более сложному механизму. Случайные ошибки в передаче и при запоминании все еще играют определенную роль, но значительно меньшую. А все потому, что разумные объяснения сложно варьировать, даже если их не проверять, а значит, случайные ошибки при передаче разумного объяснения получателю проще обнаружить и исправить. Самым важным источником варьирования объяснительных теорий является творческое мышление. Например, когда люди пытаются понять идею, которую услышали от других, они обычно понимают ее в той степени, в которой она имеет для них больше всего смысла, или в зависимости от того, что они ожидают услышать или что боятся услышать. Эти смыслы предполагаются слушателем или читателем и могут отличаться от того, что намеревался сказать или написать автор. Кроме того, люди часто пытаются улучшить объяснения, даже если они дошли до них в точной формулировке: они расширяют их творчески, подстрекаемые собственными критическими замечаниями. Если затем они передают объяснение другим, они обычно стараются передать улучшенную, по их мнению, версию.

В отличие от генов, мемы при каждой репликации приобретают все новые и новые физические формы. Люди редко выражают идеи ровно теми же словами, которыми они их услышали. Кроме этого, они переводят с одного языка на другой, из устной формы в письменную. Но на всем протяжении этого процесса мы справедливо называем результат передачи той же самой идеей – тем же самым мемом. Таким образом, для большинства мемов действительный репликатор абстрактен: это само знание. По сути, это верно и для генов: с помощью рутинных биотехнологических процедур гены переписываются в память компьютеров, где хранятся в другой физической форме. Эти записи можно перевести обратно в цепочки ДНК и встроить их разным животным. Единственная причина, по которой это еще не стало обычным делом, состоит в том, что скопировать исходный ген проще. Но придет день, когда гены редких биологических видов смогут выживать, добиваясь того, чтобы их записали в компьютер, а затем встраивали другим видам. Я говорю «добиваясь того, чтобы их записали», потому что биотехнологи будут записывать не всю информацию без разбора, а только ту, которая отвечает тому или иному критерию, например, «ген вида, выживание которого под угрозой». Способность таким образом заинтересовать биотехнологов может затем повлиять на сферу применимости знаний, связанных с этими генами.

Итак, и человеческие знания, и биологические адаптации – это абстрактные репликаторы: формы информации, которые, попав в подходящую физическую систему, имеют тенденцию в ней оставаться, а большинство их вариаций – нет.

Тот факт, что принципы теории неодарвинизма с определенной точки зрения самоочевидны, использовался для критики этой теории. Например, если теория должна быть верной, как она может допускать проверку? Один из ответов на этот вопрос, часто приписываемый Холдейну, заключается в том, что если бы в кембрийском слое нашли окаменевшие останки одного-единственного кролика, то вся теория была бы опровергнута. Однако это заблуждение. Возможность принять такое наблюдение будет зависеть от того, какие объяснения можно дать ему в конкретных обстоятельствах. Например, иногда случаются ошибки в идентификации останков или слоев, и их нужно исключить путем разумных объяснений прежде, чем описывать находку как «окаменелые останки кролика, найденные в кембрийской породе».

Но даже при наличии таких объяснений наш воображаемый кролик исключит собой не саму теорию эволюции, а только доминирующие представления об истории жизни и геологических процессов на Земле. Предположим, например, что существовал некий доисторический континент, изолированный от всех других, на котором эволюция происходила в несколько раз быстрее, чем где бы то ни было, и что там в порядке конвергенции уже в кембрийскую эпоху развилось существо, похожее на кролика; предположим также, что затем континенты соединились в результате катастрофы, уничтожившей большую часть форм жизни на первом континенте, а их останки оказались погребены. Существо, похожее на кролика, было одним из немногих, кому удалось пережить катастрофу, но и оно вскоре вымерло. Для представленных фактов даже такое искусственное объяснение бесконечно лучше, чем, например, креационизм или ламаркизм, ни один из которых никак не объясняет, откуда взялись знания, явленные нам в виде кролика.

Так что могло бы опровергнуть дарвиновскую теорию эволюции? Свидетельство, которое в свете лучшего из доступных объяснений, означает, что знание образовалось как-то иначе. Например, если путем наблюдений выяснилось бы, что некий организм претерпевал только (или в основном) благоприятные мутации, как предсказывает ламаркизм или теория самозарождения, то дарвиновский постулат о «случайной вариации» был бы опровергнут. Если бы нашлись организмы, родившиеся с новыми сложными адаптациями к чему бы то ни было, которых у их родителей не было, то опровергнутым оказалось бы предположение о постепенных изменениях, а с ним и дарвиновский механизм создания знания. Если бы на свет появился организм со сложной адаптацией, важной для выживания сегодня, но не поддержанной давлением отбора в предках организма (скажем, способность находить и использовать прогнозы погоды в Интернете и исходя из этого решать, впадать в спячку или нет), то теория Дарвина опять же была бы опровергнута. Потребовалось бы совершенно новое объяснение. Столкнувшись с нерешенной проблемой, примерно такой же, которая стояла перед Пейли и Дарвином, нам бы пришлось начать искать работающее объяснение.

Тонкая настройка

В 1974 году физик Брэндон Картер вычислил, что, если бы сила взаимодействия между заряженными частицами была на несколько процентов меньше, планеты не могли бы сформироваться, и звезды были бы единственным видом плотных объектов во Вселенной; а если бы сила была на несколько процентов больше, то звезды не взрывались бы, и кроме как в них нигде не было бы никаких других элементов, за исключением водорода и гелия. И в том, и в другом случае не было бы сложных химических процессов, а значит, вероятно, и жизни.

Другой пример: если бы начальная скорость расширения Вселенной в момент Большого взрыва была немного выше, звезды не образовались бы и во Вселенной не было бы ничего, кроме водорода при очень низкой и постоянно уменьшающейся плотности. Если бы эта скорость оказалась немного меньше, то вскоре после Большого взрыва Вселенная испытала бы коллапс. С тех пор похожие результаты были получены и для других физических констант, значения которых не выводятся ни из одной из известных теорий. Для большинства из них, если не для всех, оказывается, что, будь их значения немного другими, жизнь не могла бы существовать.

Этот замечательный факт приводят даже в качестве доказательства того, что эти константы были специально настроены, то есть задуманы, сверхъестественным существом. Это новая версия креационизма и телеологического довода, которая теперь исходит из видимых признаков замысла в законах физики. (Как это ни парадоксально, с учетом истории этой дискуссии, новая идея заключается в том, что законы физики должны были быть приспособлены для создания биосферы путем дарвиновской эволюции.) Это даже убедило, хотя и не должно было, философа Энтони Флю, бывшего ярого сторонника атеизма, в существовании сверхъестественного творца. Как я вскоре объясню, неясно даже, составляет ли эта тонкая настройка видимые признаки замысла в смысле Пейли; но даже если и составляет, это не меняет того факта, что отсылка к сверхъестественному представляет собой плохое объяснение. И в любом случае привлекать сверхъестественные объяснения на том основании, что текущее научное объяснение имеет изъян или что ему чего-то не достает, – это просто ошибка. Как мы уже выбили на камне в главе 3, проблемы неизбежны, и нерешенные проблемы найдутся всегда. Но они решаются! Наука продолжает идти вперед даже (или особенно) после совершения великих открытий, потому что сами эти открытия вскрывают новые проблемы. Поэтому если в физике есть нерешенная проблема, то это говорит о наличии сверхъестественного объяснения не больше, чем нераскрытое преступление – о том, что оно было совершено привидением.

Есть простое возражение против мысли о том, что тонкая настройка вообще требует объяснения: у нас нет разумного объяснения, которое говорило бы, что планеты (или химия) играют существенную роль в создании жизни. Физик Роберт Форвард написал великолепный научно-фантастический роман «Яйцо дракона» (Dragon’s Egg) на основе предположения о том, что информацию можно хранить и обрабатывать путем взаимодействия нейтронов на поверхности нейтронной звезды20, а значит, там, могут развиваться жизнь и разум. Мы не знаем, существует ли на самом деле такой гипотетический нейтронный аналог химической среды, как не знаем и того, мог бы он существовать, будь законы физики немного другими. Точно так же мы не имеем представления о том, какие еще среды, допускающие появление жизни, могли бы существовать при таких измененных законах. (Мысль о том, что при возникновении схожих сред можно ожидать сходных законов физики, подрывается самим существованием тонкой настройки.)

Тем не менее, независимо от того, считать ли тонкую настройку видимым признаком замысла или нет, она ставит правомерную и важную научную проблему, и вот почему. Если правда в том, что природные константы не подогнаны с целью создать в итоге жизнь, а большая часть незначительных их вариаций все же допускает то или иное развитие жизни и разума, хотя и в совершенно иной среде, то это будет необъяснимой природной закономерностью, а значит – проблемой, за которую может взяться наука.

Если же законы физики действительно тонко настроены, как это представляется нам сегодня, то есть две возможности: либо эти законы – единственные воплощенные в реальности (как вселенные), либо есть другие области реальности – параллельные вселенные21 – с другими законами. В первом случае нужно ожидать, что имеется объяснение того, почему законы такие, какие они есть, и оно либо будет ссылаться на существование жизни, либо нет. Если будет, то мы окажемся отброшены назад к проблеме Пейли: тогда получится, что эти законы имели «видимые признаки замысла» по созданию жизни, а не эволюционировали. Если же объяснение не будет ссылаться на существование жизни, то останется необъясненным другой вопрос: раз законы таковы, как они есть, по причинам, не связанным с жизнью, то почему они настроены так, что она создается?

Если есть много параллельных вселенных, каждая со своими законами физики, и в большинстве из них невозможна жизнь, то можно полагать, что наблюдаемая тонкая настройка – лишь следствие парохиальной перспективы. Только во вселенных, населенных астрофизиками, может возникнуть вопрос о том, почему константы кажутся тонко настроенными. Такой ход объяснения известен как «антропная аргументация». Считается, что она опирается на так называемый «слабый антропный принцип», хотя, вообще говоря, никакого принципа тут не требуется – только логика. (Уточнение «слабый» нужно из-за того, что было предложено несколько вариантов антропного принципа, представляющих собой нечто большее, чем просто логику, но здесь нет нужды их касаться.)

Однако при тщательном рассмотрении оказывается, что антропных доводов недостаточно для полного объяснения. Чтобы понять, почему это так, рассмотрим аргумент физика Денниса Сиама22.

Представьте, что в какой-то момент в будущем теоретики вычислили область значений одной из этих физических констант, при которых существует разумная вероятность появления астрофизиков (любого подходящего типа). Пусть это будет диапазон23 от 137 до 138. (Конечно, в действительности числа вряд ли будут целыми, но мы не станем усложнять рассуждения.) Кроме того, подсчитано, что наибольшая вероятность появления астрофизиков соответствует середине диапазона, то есть значению константы 137,5.

Далее экспериментаторы приступили к непосредственному измерению константы, скажем, в лабораториях или путем астрономических наблюдений. Что они должны предсказывать? Весьма любопытно, но из антропного объяснения непосредственно следует предсказание, что значение константы не будет в точности равно 137,5. Почему? Допустим противное. Пусть – по аналогии – центр мишени для дротиков представляет значения, при которых астрофизики могут возникнуть. Будет ошибкой предсказать, что среднестатистический дротик попадет точно в центр. Аналогичным образом в подавляющем большинстве вселенных, в которых могли бы производиться эти измерения (потому что там есть астрофизики), эта константа не примет в точности значение, оптимальное для образования астрофизиков, и не будет слишком близка к нему в сравнении с размером центра мишени.

Из этого Сиама сделал вывод, что, если бы мы действительно измерили одну из тех физических констант и выяснили, что она очень близка к оптимальной для появления астрофизиков, это бы статистически опровергло, а не подтвердило антропное объяснение ее значения. Конечно, остается возможность, что это просто совпадение, но если бы мы согласились принимать в качестве объяснений астрономически невероятные совпадения, то нам вообще не следовало озадачиваться проблемой тонкой настройки, а мистеру Пейли мы должны были бы сказать, что часы на пустыре могли образоваться сами собой.

Более того, во вселенных, где условия настолько враждебны, что едва допускают появление астрофизиков, их существование должно быть относительно маловероятным. Если выстроить все значения, согласующиеся с появлением астрофизиков, в ряд, то исходя из антропного объяснения мы будем ожидать, что измеренное значение попадет в какую-нибудь типичную точку, не очень близко к середине или любому из концов.

Однако – и здесь мы приходим к главному выводу Сиамы – это предсказание кардинально меняется, если объяснить нужно сразу несколько констант. Да, маловероятно, что любая из констант окажется у края своей области значений, но чем констант больше, тем более вероятно, что по крайней мере одна из них там будет. Это можно проиллюстрировать графически следующим образом, заменив центр мишени отрезком прямой, квадратом, кубом… Можно представить себе дальнейший рост числа размерностей, соответствующий количеству тонко настроенных констант. Произвольно определим понятие «у края» как «не далее чем в 10 % от края по отношению ко всей области значений». В случае одной константы, как показано на диаграмме, 20 % возможных значений лежат около одного из краев области значений, а 80 % – «далеко от края». Но если констант две, то, чтобы оказаться «далеко от края», два значения должны удовлетворять двум ограничениям, и таких пар будет уже только 64 %, а 36 % находятся у края хотя бы по одному из двух измерений. Если констант три, у края лежит уже почти половина вариантов – 48,8 %, если быть точным. А если их 100, то у края окажутся 99,9999999 %!


Таким образом, чем больше констант, тем ближе типичная вселенная с астрофизиками к тому, что астрофизиков в ней нет. Число таких констант неизвестно, но, по-видимому, их несколько, и в этом случае подавляющее большинство вселенных в антропно выделенной области будет располагаться вблизи ее краю. Значит, заключил Сиама, антропное объяснение предсказывает, что Вселенная едва-едва способна производить астрофизиков, – и это предсказание практически противоположно тому, которое делается в случае одной константы!

На первый взгляд может показаться, что это, в свою очередь, объясняет другую великую и нерешенную научную загадку – парадокс Ферми, названный так по имени физика Энрико Ферми, который, как говорят, сформулировал ее всего в двух словах: «Где они?» Где внеземные цивилизации? С учетом принципа заурядности или даже просто того, что нам известно о Галактике и Вселенной, нет причины полагать, что феномен появления астрофизиков уникален для нашей планеты. Похожие условия, по-видимому, существуют во многих системах других солнц, так почему в каких-то из них не могут получаться те же результаты? Кроме того, с учетом временных масштабов, в которых развиваются звезды и галактики, чрезвычайно маловероятно, что любая заданная внеземная цивилизация в данный момент находится на том же уровне технологического развития, что и мы: скорее всего, она либо на миллионы лет моложе (то есть еще не существует), либо старше. Тогда у более старых цивилизаций было уже достаточно времени на исследование Галактики или хотя бы на то, чтобы послать автоматические космические зонды или сигналы. Парадокс Ферми заключается в том, что таких цивилизаций, зондов или сигналов не наблюдается.

Было предложено много возможных объяснений, но до сих пор ни одно из них не оказалось достаточно разумным. Может показаться, что антропное объяснение тонкой настройки в свете аргумента Сиамы дает хорошее решение проблемы: если физические константы в нашей Вселенной едва-едва могут привести к появлению астрофизиков, то неудивительно, что это произошло лишь однажды, так как вероятность того, что в одной и той же Вселенной произойдут два таких независимых события, исчезающе мала.

К сожалению, это объяснение тоже оказывается плохим, потому что фокусироваться на фундаментальных константах – это парохиальный подход: ведь на самом деле нет существенной разницы между теми же самыми законами физики с разными константами и другими законами физики. А логически возможных законов физики бесконечно много. И если бы все они воплощались в настоящих вселенных – как полагают некоторые космологи, такие как Макс Тегмарк24, то тот факт, что наша Вселенная находится в точности на краю класса вселенных, которые производят астрофизиков, был бы статистически достоверен.

Мы знаем, что это не может быть так в силу аргумента, предложенного Фейнманом (применительно к немного иной проблеме). Возьмем класс всех возможных вселенных, в которых есть астрофизики, и посмотрим, что еще есть в большинстве из них. В частности, возьмем сферу такого размера, чтобы в ней смог поместиться ваш мозг. Если вы хотите объяснить тонкую настройку, то для этой цели ваш мозг в его текущем состоянии можно считать «астрофизиком». В классе всех вселенных, содержащих астрофизиков, есть много таких, которые содержат сферу, изнутри идеально совпадающую с вашей, включая ваш мозг до последней детали. Но в подавляющем большинстве этих вселенных вокруг сферы царит хаос: практически произвольное состояние, поскольку таких состояний намного больше, чем иных. Далее, такое состояние обычно не только аморфное, но и горячее. Таким образом, в большинстве подобных вселенных в следующий момент мы мгновенно погибнем от хаотичного излучения, источники которого находятся вне сферы. Но в любой заданный момент теория о том, что мы погибнем за какую-то пикосекунду, отвергается наблюдением через пикосекунду, и после этого можно выдвигать другую такую теорию. Так что это очень неразумное объяснение – доведенная до крайности интуиция азартного игрока.

То же самое верно и для чисто антропного объяснения всех других тонких настроек, включающих более чем несколько констант: такие объяснения предсказывают, что с исключительно высокой вероятностью мы находимся во вселенной, в которой астрофизики едва-едва возможны и перестанут существовать за одно мгновение. Таким образом, это неразумные объяснения.

С другой стороны, если законы физики существуют только в одной форме и лишь значения немногих констант отличают одну вселенную от другой, тогда сам факт, что законы не воплощаются в иных формах, – это тоже своего рода тонкая настройка, которую антропное объяснение обходит стороной.

Если рассматривать в качестве объяснения теорию о том, что все логически возможные законы физики воплощаются в виде вселенных, то возникает еще одна серьезная проблема. Как я объясню в главе 8, при рассмотрении подобных бесконечных множеств, зачастую нет способа «посчитать» или «измерить», у скольких из них есть этот признак, а не тот. С другой стороны, в классе всех логически возможных сущностей те, которые способны понимать себя, как это удается физической реальности, в которой мы находимся, вне сомнения, в любом разумном смысле, представляют собой микроскопическое меньшинство. Мысль о том, что одна из них «случилась сама собой», без объяснения, вне сомнения, является просто теорией самозарождения.

Кроме этого, почти все «вселенные», описываемые этими логически возможными законами физики, кардинально отличаются от нашей – настолько, что они в этот аргумент должным образом не вписываются. Например, бесконечно многие из них не содержат ничего, кроме одного бизона, в разных позах, и существуют ровно 42 секунды. Бесконечно много других содержат одного бизона и одного астрофизика. Но что такое астрофизик во вселенной, где нет ни звезд, ни научных инструментов и практически нет данных? Что такое ученый или любой думающий человек во вселенной, где верны только неразумные объяснения?

Практически все логически возможные вселенные, в которых есть астрофизики, подчиняются законам физики, которые являются плохими объяснениями. Так должны ли мы предсказать, что и наша Вселенная необъяснима? Или что вероятность этого велика, хотя и неизвестна? Таким образом, снова антропные доводы, основанные на «всех возможных законах», приходится отбрасывать как неразумные объяснения.

Это дает мне основание заключить, что, хотя антропный принцип вполне может быть частью объяснения очевидной тонкой настройки констант и других наблюдений, он никогда не может быть полным объяснением того, почему мы наблюдаем нечто, что иначе выглядело бы слишком целенаправленным, чтобы объяснить это совпадением. Здесь требуется особое объяснение, в терминах особых законов природы.


Как мог заметить читатель, все неразумные объяснения, о которых я говорю в этой главе, в конечном счете взаимосвязаны. Ожидаешь слишком многого от антропного принципа или пытаешься слишком тщательно разобраться в ламаркизме – получаешь самозарождение. Слишком серьезно отнесешься к последнему – получаешь креационизм и так далее. А все потому, что они все обращаются к одной основополагающей проблеме и легко поддаются варьированию. Их легко заменить друг другом или вариантами самих себя, а как объяснения они «слишком просты»: они одинаково хорошо могли бы объяснить все, что угодно. Но к неодарвинизму было не просто прийти и его не просто подправить. Попробуйте – даже на уровне собственных заблуждений Дарвина, – и получится объяснение, которое работает намного хуже. Попробуйте объяснить с его помощью что-то не дарвинистское, например, новую сложную адаптацию, у которой не было предшественников в организмах предков, и вы не сможете придумать вариант с такими чертами.

Антропные объяснения пытаются объяснить целенаправленную структуру (такую как тонко настроенные константы) через единственный акт отбора. Это не характерно для эволюции, и так быть не может. Разгадка проблемы тонкой настройки появится из объяснения, которое будет конкретно описывать то, что мы наблюдаем. Это будет, говоря словами Уилера, «такая простая идея… что… мы непременно спросим: а разве могло быть иначе?». Другими словами, проблема не в том, что мир так сложен, что мы не можем понять, почему в нем все так, как есть, а в том, что все настолько просто, что мы пока не можем этого понять. Но это станет очевидно лишь в ретроспективе.

Все эти неразумные объяснения биосферы либо вообще не позволяют даже взяться за решение проблемы того, как создается знание в адаптациях, либо объясняют это плохо. Другими словами, во всех в них недооценивается процесс сотворения, причем теория, которая недооценивает его больше всего, это – как это ни парадоксально – креационизм. В самом деле: если сверхъестественному творцу пришлось бы создавать Вселенную в момент, когда Эйнштейн, Дарвин или любой великий ученый только что сделал свое главное открытие, то настоящим автором этого открытия (и всех более ранних открытий) был бы не ученый, а сверхъестественное существо. Значит, подобная теория отрицала бы существование того единственного процесса творения, который действительно имел место в генезисе открытий этого ученого.

И это действительно процесс творения! Пока открытие не сделано, никакой предиктивный процесс не может раскрыть его содержание или последствия – ведь иначе он бы и был самим открытием. Таким образом, научное открытие – крайне непредсказуемая вещь, несмотря на то, что оно определяется законами физики. Я подробнее поговорю об этом любопытном факте в следующей главе; вкратце – он обусловлен существованием «эмерджентных» уровней объяснения. В данном случае суть в том, что достигаемое наукой (и творческим мышлением в целом) – это непредсказуемое творение ex nihilo25. Это же верно и для биологической адаптации, но ни для какого другого процесса. Поэтому креационизм был назван неправильно. Это не теория, объясняющая, что знание обусловлено актом творения, а как раз наоборот: она отрицает, что творение имело место в реальности, помещая происхождение знания в область необъяснимого. На самом деле креационизм – это отрицание творения, как и все другие ложные объяснения.

Загадка понимания того, что представляют собой живые сущности и как они появились, дала начало странной истории заблуждений, хороших догадок и парадоксов. Последний из парадоксов – в том, что теория неодарвинизма, как и теория познания Поппера, в действительности описывает процесс творения, хотя их конкурентам, начиная с креационизма, это так и не удалось.

19.Я использую терминологию, которая немного отличается от терминологии Докинза. Он называет репликатором все, что копируется, независимо от причины. А то, что я называю репликатором, он называет «активным репликатором». – Прим. автора.
20.Звезда, которая под гравитационным воздействием сжалась до диаметра всего несколько километров, став настолько плотной, что большая часть ее вещества превратилась в нейтроны. – Прим. автора.
21.Речь идет не о «параллельных вселенных» из квантовой мультивселенной, которую я опишу в главе 11. Те вселенные подчиняются одинаковым законам физики и находятся в постоянном, хоть и небольшом, взаимодействии. Также они носят гораздо менее спекулятивный характер. – Прим. автора.
22.Деннис Сиама (1926−1999) – британский физик и космолог, которого королевский астроном Мартин Рис называл главой одной из трех крупнейших мировых школ астрофизики (наряду с Джоном Уилером и Яковом Зельдовичем). В русскоязычных публикациях 1970-х годов его фамилия записывалась как Шьяма, в последнее время встречается также вариант Шиама. – Прим. ред.
23.Очевидно, делается намек на постоянную тонкой структуры, которая приблизительно равна 1/137. – Прим. ред.
24.Макс Тегмарк (р. 1967) – американский космолог шведского происхождения. Автор идеи, согласно которой «все математически непротиворечивые структуры существуют физически». Книги Макса Тегмарка «Математическая Вселенная» выходит в переводе на русский язык в 2014 году. – Прим. ред.
25.Ex nihilo (лат.) – из ничего. – Прим. ред.

Бесплатный фрагмент закончился.

Возрастное ограничение:
12+
Дата выхода на Литрес:
07 сентября 2014
Дата перевода:
2014
Дата написания:
2011
Объем:
730 стр. 51 иллюстрация
ISBN:
978-5-9614-3541-2
Переводчик:
Правообладатель:
Альпина Диджитал
Формат скачивания:
epub, fb2, fb3, mobi, pdf, zip

С этой книгой читают