Читать книгу: «Гонка за Нобелем», страница 5

Шрифт:

Космическая линейка Генриетты Ливитт

В 1918 году астроном Харлоу Шепли обнаружил специфический тип звезд внутри плотного, шаровидного их скопления, известного как шаровое скопление. Эти массивные кластеры, каждый из которых включает больше 100 000 звезд, подобны небесным сундукам сокровищ. В них сокрыты настоящие звездные бриллианты – переменные пульсирующие звезды, носящие общее название «цефеиды». Шепли мгновенно сообразил, что наткнулся на нечто действительно важное, – благодаря работе американского астронома Генриетты Ливитт.

В 1912 году Ливитт объявила о замечательном открытии. Учитывая, что излучаемый цефеидами свет пульсирует с регулярной периодичностью, Ливитт поняла, что предсказуемость изменения блеска можно использовать для измерения расстояния до далеких астрономических объектов. «Легко провести прямую линию между каждой из двух последовательностей точек, соответствующих максимуму и минимуму, – писала она, – тем самым показывая, что есть простая связь между яркостью переменных звезд [цефеид] и их периодами»42.

Используя эту зависимость, известную сегодня как закон Ливитт, она установила, что цефеиды функционируют как эталонные небесные хронометры. Период пульсации цефеид непосредственно связан с их светимостью: чем ярче звезда, тем медленнее она пульсирует. Цефеида с однодневным периодом имеет светимость (суммарное излучение энергии за отрезок времени) в сотню раз больше, чем Солнце. Цефеида с пятидневным периодом в десять раз ярче однодневной цефеиды.

«Прямая линия» Ливитт, по сути, стала самой длинной линейкой, придуманной человечеством. Поскольку яркость43 любого светящегося объекта уменьшается обратно пропорционально квадрату расстояния до него, цефеиды стали для астрономов идеальными ориентирами, с помощью которых можно было измерить расстояние до далеких астрономических объектов. В 1918 году Харлоу Шепли сделал именно это: когда он обнаружил цефеиду с однодневным периодом на неизвестном расстоянии, которая была на четверть ярче, чем цефеида с таким же однодневным периодом, расположенная на известном расстоянии от Земли, он смог рассчитать, что более тусклая цефеида находится вдвое дальше. Это было поразительное открытие: тиканье часов превратилось в отметки на космической линейке, простирающейся далеко за пределы Солнечной системы.

Шепли использовал закон Ливитт для измерения расстояний до нескольких шаровых скоплений. Он определил их местоположение на космической карте и показал, что они никоим образом не центрированы вокруг Солнечной системы. Вместо этого они центрированы относительно некой точки недалеко от созвездия Стрельца, расположенной на расстоянии более миллиона триллионов миль от Земли. Как и Галилей с его наблюдением спутников Юпитера, Шепли использовал небесные объекты, которые не вращаются вокруг нас, чтобы избавить человека от геоцентрических иллюзий. Мы не только не находимся в центре Солнечной системы, но и наша Солнечная система не в центре галактики! Шепли разрешил вторые Великие дебаты в пользу Коперника: мы не привилегированные наблюдатели, а обитатели галактической периферии.

Итак, мы не в центре Млечного Пути. Но по крайней мере Млечный Путь – это все-таки вся Вселенная… Или нет? Конечно, нет.

Вскоре после того, как Шепли нашел настоящий центр Млечного Пути, между ним и астрономом Гебером Кёртисом начались споры о существовании других галактик44. Эти споры известны как Большие дебаты. (Но, хотя их так назвали, по сути, это третий этап в нашей серии дебатов о том, занимает ли человечество некое привилегированное место в космосе.)

Дебаты Кёртиса – Шепли стали первой публичной дискуссией в истории астрономии. Они бушевали на протяжении нескольких лет, когда противники атаковали друг друга, публикуя научные статьи. Шепли был загипнотизирован размерами Млечного Пути. По его расчетам, длина нашей Галактики в поперечнике составляла 300 000 световых лет (сегодня мы знаем, что эта цифра в три раза меньше). Поэтому, утверждал он, Млечный Путь – это и есть вся Вселенная.

Как Шепли, этот титан астрономии, ярый сторонник коперниканского принципа, сумевший переместить Солнечную систему из центра Галактики на периферию, мог так заблуждаться? В этом снова была виновата космическая пыль – остатки давно умерших звезд.

Роковой телескоп

Галилеев телескоп положил начало Великим дебатам. Телескоп Гершеля расширил тему дискуссии за пределы Солнечной системы на весь Млечный Путь, поместив нас в привилегированное центральное положение. Гебер Кёртис утверждал, что структура нашей Галактики слишком неоднородна, чтобы быть всей Вселенной. Но это вопроса не решало. Вот если бы ему удалось открыть другую галактику, тогда Кёртис мог бы поставить Млечный Путь на место, сбросив нашу Галактику с трона короля всей Вселенной.

Самым подходящим кандидатом на другую галактику была туманность Андромеды. Несмотря на свое название, туманность Андромеды, как нам известно сегодня, такая же галактика, как наша. Но, чтобы доказать это, Кёртису требовался точный ориентир, а он не доверял Ливитт и ее новомодным цефеидам.

В качестве такого ориентира Кёртис выбрал так называемые новые звезды – эти звезды, известные с древних времен, характеризуются внезапными резкими всплесками светимости (их называют вспышками или взрывами). Кёртис сравнил новые звезды, расположенные в туманности Андромеды, с новыми звездами в Млечном Пути. Поскольку новые звезды в туманности Андромеды были намного тусклее, по мнению Кёртиса, это означало, что либо эти звезды находились гораздо дальше, – как мы знаем, интенсивность света уменьшается обратно пропорционально квадрату расстояния (рис. 8), – либо он обнаружил новый класс новых звезд. Но привлечение нового феномена, чтобы решить старые проблемы, для астронома так же неудобоваримо, как фастфуд – для истинного гурмана. Конечно, так можно чего-то добиться, но потом вы себя ненавидите.

Кёртис выиграл третий раунд Великих дебатов техническим нокаутом: в целом астрономы признали, что туманность Андромеды должна находиться на очень большом расстоянии, но на каком именно, на тот момент было неизвестно. Это огромное расстояние удалось измерить лишь несколько лет спустя, причем – кто бы мог подумать! – благодаря любимым цефеидам Харлоу Шепли.

Звезда, которая потрясла космос

Ночь 5 октября 1923 года не предвещала для Эдвина Хаббла ничего необычного. Он, как всегда, находился в лаборатории Маунт-Вилсон к северу от Пасадены, Калифорния, и изучал ночное небо через огромный телескоп диаметром 254 см. Этот монстр был в два раза больше левиафана Гершеля. Астрономы управляли его неуклюжими движениями, сидя в клетке, прикрепленной сбоку телескопа. Должно быть, Хаббл ощущал себя кем-то вроде вождя маори, оседлавшего кита, чтобы исследовать таинственные глубины космоса на спине чудовища.


В тот вечер Хаббл фотографировал туманность Андромеды. Проявив фотопластинку, он увидел на ней светящийся объект, который счел обыкновенной новой звездой на окраине туманности. Хаббл видел много таких и раньше. Он спокойно пометил положение звезды на фотопластинке буквой N (nova) как обычную вспыхнувшую звезду, предположив на этом основании удаленность туманности Андромеды. Поскольку изменение яркости при вспышках новых звезд не повторяется, Кёртис, да и кто-то другой, не мог измерить точно, как далеко находится туманность Андромеды.

Оказалось, что отмеченная Хабблом звезда вовсе не новая. Спустя несколько ночей Хаббл снова вернулся к телескопу и, взглянув на тот же участок неба, с удивлением обнаружил, что яркость звезды периодически менялась. Новые звезды вспыхивают ярким светом и так же быстро меркнут, и невозможно предсказать, когда они вспыхнут снова и вспыхнут ли вообще. В отличие от этого обнаруженная Хабблом звезда пульсировала подобно тикающим часам, как цефеиды Ливитт.



Хаббл тут же понял, что может использовать эту драгоценную звезду в качестве космической линейки, как это делала Ливитт больше десяти лет назад. Он достал фотопластинку, стер букву N и вместо нее жирными заглавными буквами вывел «VAR!» – variable, или переменная звезда (рис. 9). Волнение Хаббла было понятно. Используя закон Ливитт, он смог рассчитать, что туманность Андромеды находится на расстоянии более 2,5 млн световых лет от Земли. Это расстояние в десять раз превышало диаметр Млечного Пути. Туманность Андромеды не могла находиться в нашей Галактике. Следовательно, это была отдельная, самостоятельная галактика. А это означало, что Млечный Путь не мог быть всей Вселенной, хотя предположительно и составлял важную ее часть. Еще один болезненный удар по космическому эго человечества, еще один триумф коперниканского принципа.

* * *

Сегодня мы знаем, что галактика Млечный Путь (рис. 10) состоит из трех основных частей: утолщения – так называемого балджа, тонкого диска и большого сферического гало. Шепли был прав, утверждая, что шаровые скопления находятся в гало. В центре Млечного Пути расположена массивная черная дыра – своего рода гравитационная воронка, вокруг которой вращается вся наша Галактика.



Тонкий диск, в котором находится Солнце, состоит преимущественно из молодых звезд, газа и пыли. Пыль может как отражать свет (как это происходит в туманности Плеяд), так и поглощать его, как поднимающийся из трубы дым. В пылевых спиральных рукавах диска формируется бо́льшая часть новых звездных систем, и именно в диске пыль поглощает больше всего света. Шепли не учел, что шаровые скопления и их цефеиды находятся в относительно беспылевых зонах, в отличие от цефеид в диске, которые он использовал как ориентиры для измерения размеров Галактики. Темные пылевые регионы поглощают свет от удаленных источников и делают его слабее, чем он есть на самом деле, точно так же, как через запыленное стекло уличный фонарь кажется тусклее, чем через чистое (рис. 11). Если не сделать поправку на запыленное стекло, можно решить, что уличный фонарь находится гораздо дальше, чем в реальности.



Марку Твену приписывают знаменитое высказывание: «История не повторяется, она рифмуется». В астрономической саге последних веков пыль присутствовала в каждой ее строфе. Пыль вводила в заблуждение величайших астрономов в истории, от Галилея до Гершеля и Хаббла, и продолжит свои божественные рифмы в грядущих дебатах. Из пыли мы пришли, в пыль и уйдем.

Глава 4
Большой взрыв – большие проблемы

Каждый из нас либо старается оправдать надежды своего отца, либо повторяет его же ошибки.

БАРАК ОБАМА. ДЕРЗОСТЬ НАДЕЖДЫ

Эдвин Хаббл был не из тех, кто разочаровывал своего отца. Настоящее воплощение родительской мечты: блестящий ум, подающий надежды спортсмен, он стал одним из первых получателей престижной стипендии Родса в Оксфордском университете. Хотя Хаббл с детства увлекался астрономией, он подчинился воле отца, желавшего, чтобы сын делал карьеру в такой области, в которой мог сделать себе имя. Так Эдвин взялся за юриспруденцию, но между усердными занятиями юриспруденцией выкраивал время на лекции по астрономии: зов звездных сирен был слишком силен, чтобы Хаббл мог его игнорировать. Вскоре после смерти отца в 1913 году он бросил юридическую практику, по слухам заявив: «Лучше я буду второразрядным астрономом, чем перворазрядным адвокатом».

Как мы уже знаем, Эдвин Хаббл стал далеко не второразрядным астрономом. В 1923 году, всего через пять лет после получения докторской степени (перед этим Хаббл ушел добровольцем в армию и к концу Первой мировой войны дослужился до звания майора), он сделал одно из величайших открытий в истории астрономии, перевернув представления о том, что раньше считалось обычной туманностью, и признав в ней целую галактику – нашего ближайшего соседа Андромеду. Но даже этого титанического деяния ему было мало.

Хаббл начал охотиться за цефеидами за пределами нашей Галактики. Чем больше таких цефеид – и галактик – он находил, тем больше становилась наша Вселенная. Используя метод спектрального анализа излучения астрономических объектов, усовершенствованный Весто Слайфером, Хаббл обнаружил, что может измерять не только расстояние, но и скорость движения галактик. Слайфер пытался это делать еще в 1917 году45. На тот момент астрономы уже открыли феномены синего и красного смещения: спектр излучения астрономического объекта кажется более синим, если объект приближается к нам, и более красным, если удаляется. Это явление – оптический аналог хорошо знакомого нам акустического эффекта Доплера, который объясняет, например, почему при приближении машины скорой помощи звук сирены становится более высоким, а при удалении – более низким. Красное и синее смещение проявляется в виде заметного сдвига спектральных линий в красную или синюю сторону на спектрограммах (так называются фотографии спектров астрономических объектов).

Хаббл начал с туманности Андромеды и обнаружил, что та медленно, но верно приближается к Млечному Пути. Это было вполне объяснимо, поскольку галактики находятся под действием взаимного гравитационного притяжения. Такое же сближение наблюдалось и с некоторыми другими близлежащими галактиками. Вселенная стала казаться понятной. Пока в один прекрасный день все не изменилось.

* * *

В 1922 году, за год до того, как Хаббл открыл свою знаменитую цефеиду VAR! Эйнштейн получил Нобелевскую премию. Назвать эту награду разочаровывающей было бы преуменьшением; предстоящий приз он обещал передать к тому времени уже бывшей жене Милеве, что было оговорено условиями их развода в 1918 г.46 Хотя многие считают, что Эйнштейн получил премию за создание специальной теории относительности, на самом деле это было не так. Не стало предметом награды и второе его крупнейшее достижение – общая теория относительности, которая описывает, как массивные объекты искривляют ткань пространства-времени, влияя тем самым на траекторию движения света в космосе. Ученые мужи в Нобелевском комитете сочли эти два чисто теоретических открытия «еврейской физикой, вводящей мир в заблуждение». В действительности Эйнштейн получил нобелевское золото за объяснение фотоэлектрического эффекта – феномена, открытого лауреатом Нобелевской премии 1905 года Филиппом Ленардом. Нежелание Нобелевского комитета присуждать высокую научную награду за общую теорию относительности отчасти было понятным: даже сам Эйнштейн не до конца сформулировал ее выводы.

Вскоре после завершения работы над общей теорией относительности в 1916 году Эйнштейн продемонстрировал, что она позволяет объяснить явления, которые не мог объяснить закон всемирного тяготения Ньютона (предложенная в XVIII веке теория, описывающая гравитационное притяжение), например, некоторые странные особенности орбиты Меркурия. В следующем году Эйнштейн сделал еще более смелый шаг. Он решил проверить, действуют ли законы ОТО за пределами Солнечной системы. В конце концов, если принцип Коперника верен, ОТО должна быть применима ко всей галактике Млечный Путь, которая в те времена считалась всей Вселенной.

Увы, Эйнштейн сразу же столкнулся с проблемой. Согласно уравнениям ОТО, Вселенная должна была со временем уменьшаться из-за гравитационного притяжения поля всех звезд. Но Млечный Путь вовсе не сжимался; звездная спектроскопия показывала, что далекие звезды двигались как в сторону Земли, так и прочь от нее. Поэтому Эйнштейн модифицировал свою теорию в соответствии с наблюдаемыми свойствами космоса. Как вы помните, это было задолго до открытий Хаббла, когда все, включая Эйнштейна, считали, что космос за пределами Солнечной системы и горстки соседних звезд неподвижен. Чтобы согласовать модель ОТО со стационарной Вселенной, он ввел в свои уравнения поправочный коэффициент, позже названный космологической постоянной, который предполагал существование своего рода «антигравитации» и таким образом объяснял странное нежелание Вселенной уменьшаться в размерах. На какой-то момент во Вселенной воцарилось равновесие.

В 1922 году, уже после того, как Эйнштейн получил Нобелевскую премию, российский космолог Александр Фридман заинтересовался моделью Эйнштейна. Фридман задался вопросом: что, если включить в уравнения ОТО всю материю и энергию, которые есть во Вселенной? К своему изумлению, он обнаружил, что космос должен либо сжиматься, либо расширяться, но не может быть стационарным, как утверждал Эйнштейн в 1917 году. Сжатие хорошо объяснилось гравитацией. Но Фридмана заинтриговала идея расширения: как такое могло происходить?

К сожалению, жизнь Фридмана оборвалась слишком рано, чтобы он сумел раскрыть эту тайну. В 1925 году, возвращаясь из свадебного путешествия, он заразился брюшным тифом и умер в возрасте 37 лет. Тем не менее его блистательные научные идеи были подхвачены двумя выдающимися космологами – в то время аспирантом Георгием (Джорджем) Гамовым и бельгийским католическим священником и астрономом Жоржем Леметром, преподававшем в Лёвенском католическом университете.

В 1927 году Леметр изучал следствия модели Фридмана: что, если Вселенная действительно не сжимается, а расширяется?

Эйнштейн высмеял идею Леметра, назвав ее «вопиюще» неправильным применением его теории. Учитывая скудость внегалактических наблюдений на тот момент, такой приговор был отчасти объясним. Действительно, к 1927 году уже было открыто множество других галактик, находящихся за пределами Млечного Пути и туманности Андромеды, и их спектры все чаще показывали красное смещение, что означало, что больше половины из них удалялись от нас. Тем не менее эти попытки доказательства расширения Вселенной едва ли были убедительны. Леметр опирался на очень неточные и неполные данные.

К сожалению для Леметра, Хаббл тоже занимался этой темой и, в отличие от бельгийского священника, был вооружен самым мощным телескопом в мире – 254-сантиметровым монстром на горе Вилсон, с помощью которого он мог измерять такие непостижимо огромные космические расстояния, как то, что отделяет нас от туманности Андромеды.

К вопросу о спектре

В 1929 году, после нескольких лет погони за цефеидами и спектроскопических исследований, Хаббл смело сформулировал закон: чем дальше от нас находится галактика, тем с большей скоростью она удаляется47. Это было дерзкое утверждение, поскольку данных на тот момент имелось недостаточно. Однако подчас даже несовершенные теории позволяют делать правильные описания, как это было в случае гелиоцентрической гипотезы Галилея или предположения Шепли о гигантских размерах Млечного Пути. Часто даже несовершенные данные подкрепляют хорошую теорию. (Предостережение для моих коллег-космологов: такое случается крайне редко!) В конечном счете зависимость между скоростью удаления галактик и расстоянием до них стала называться законом Хаббла48. Отец Эдвина Хаббла мог бы гордиться своим сыном: хотя тот не стал известным адвокатом, его именем был назван важный закон.

Из закона Хаббла вытекало, что Вселенная не только находится в динамичном движении, но и расширяется наподобие воздушного шара (рис. 12). В это было трудно поверить. Казалось, это нарушает коперниканский принцип: неожиданно мы опять стали особенными, если почти всё в космосе удаляется от нас в разные стороны. Представьте, что вы находитесь на многолюдной вечеринке, где половина танцующих удаляется от вас, а половина приближается к вам. А теперь представьте, что все танцующие удаляются от вас: вы можете сделать вывод, что с вами что-то не так. Но с расширяющейся Вселенной Хаббла было еще хуже. Из расширяющейся модели следовал поистине безумный вывод: если повернуть часы назад, то у Вселенной было начало – момент, до которого не существовало ни Вселенной, ни времени! Это превосходило самые дерзкие научные фантазии. Куда комфортнее было верить в то, что Вселенная вечна, без начала и конца, и списать разбегание галактик на простую оптическую иллюзию. Даже Эйнштейн много лет спустя после публикации наблюдений Хаббла в 1929 году продолжал придерживаться теории вечной Вселенной49. Таким образом, Хаббл открыл четвертый раунд Великих дебатов: находится ли человечество не только в самом удачном месте, но и в самое удачное время в истории Вселенной.



Первые количественные данные, полученные космологами, при всей их неточности ясно показывали: наша Вселенная меняется. Но, подобно тому как наблюдения Галилея не доказывали гелиоцентрическую модель, а опровергали представление о том, что Земля находится в центре Солнечной системы, наблюдения Хаббла опровергали стационарную модель Вселенной, но не доказывали, что у Вселенной было начало. Даже если у Вселенной действительно было начало, как мы можем об этом узнать? И что вообще могло привести к рождению Вселенной?

В гениально провидческой статье, опубликованной в 1931 году в журнале Nature, Леметр представил предтечу теории, известной нам сегодня как теория Большого взрыва. Кстати, термин «Большой взрыв» был придуман не им – кем, вы вскоре узнаете. Леметр назвал свою модель «гипотезой первичного атома», утверждая, что Вселенная могла возникнуть «из единственного атома, атомная масса которого равняется всей массе Вселенной». Он предположил, что процесс рождения Вселенной представлял собой стремительное расширение (хотя вся заслуга за эту гипотезу приписывается Хабблу).

Леметр не только первым описал Большой взрыв, но и впервые выдвинул некоторые идеи о том, что мы теперь называем квантовой гравитацией. Это теория, связывающая эйнштейновские гравитационные взаимодействия с квантовой механикой – законами физики, описывающими поведение субатомных частиц, таких как фотоны и электроны. Однако Леметру пришлось поплатиться за свое научное провидение. Идея квантового происхождения Вселенной слишком опередила свое время, чтобы научное сообщество восприняло ее всерьез. В 1930-е годы сама квантовая механика только-только начала делать первые шаги, и ее объединение с теорией гравитации до сих пор остается для физиков недостижимой мечтой. Таким образом, к концу 1930-х годов четвертый этап Великих дебатов по-прежнему происходил в отсутствии жюри.

В любой неудаче начало, безусловно, половина дела.

Джордж Элиот

Гипотеза Леметра о том, что Вселенная родилась из материи и энергии, сжатых в одну, вероятно бесконечно малую точку, пошатнула тысячелетние представления о вечности и неизменности космического мироздания. Из нее вытекало, что в прошлом Вселенная была меньше и плотнее, а до какого-то момента и вовсе не существовала. Вместе с наблюдениями Хаббла гипотеза первичного атома Леметра породила четыре серьезные проблемы как физического, так и философского свойства.


Проблема № 1: пространство. Закон Хаббла устанавливал прямо пропорциональную зависимость между расстоянием до далекой галактики (измеренным на основе закона Ливитт) и скоростью ее удаления (измеренной с помощью открытого Слайфером эффекта красного смещения спектра). Прямая пропорциональность означала, что галактика, находящаяся на расстоянии 10 млн световых лет, удаляется от нас в два раза быстрее, чем галактика, расположенная на расстоянии 5 млн световых лет. Эту зависимость можно инвертировать: измерив расстояние и скорость удаления галактик сегодня, мы можем «перемотать» историю Вселенной назад и определить время, когда все галактики во Вселенной «соприкасались» друг с другом. Но эта логика в конце концов приводит нас к заключению, что, когда начиналось расширение, Вселенная была бесконечно мала. Ограниченное вещество, сжатое в бесконечно малом объеме, означает, что космическая плотность была неограниченной, как и температура.

Но такое состояние ничем не подтверждалось. Казалось невероятным, что Вселенная эволюционировала от состояния полной бесконечности (например, бесконечной плотности) к состоянию с конечными значениями тех же физических свойств. Как можно быть уверенным в том, что сами законы физики остались бы неизменными в ходе такого события? Например, могли ли сохраняться в бесконечно плотной и горячей ранней Вселенной такие фундаментальные константы, как скорость света? Если нет, теория заходит в тупик.


Проблема № 2: время. Опираясь на очень неточные и неполные данные, Хаббл неправильно рассчитал скорость галактик – он завысил ее в семь раз по сравнению с сегодняшней оценкой. Такая скорость предполагала, что разбегание галактик должно было начаться относительно недавно. Это привело к тому, что Хаббл значительно недооценил возраст Вселенной, определив его всего в 2 млрд лет – ровно в семь раз меньше, чем считают современные ученые. Что ввело Хаббла в заблуждение? Как и Гершель и Шепли, он пал жертвой вездесущего бича Вселенной – космической пыли. Пыль затмевала свет драгоценных цефеид, которые Хаббл использовал для своих измерений, заставляя их казаться более удаленными, чем они были на самом деле50.

Из-за этих грубых ошибок в измерениях Вселенная Хаббла получилась слишком стремительной и слишком молодой: она была моложе некоторых существующих в ней звезд и даже моложе Земли, возраст которой был довольно точно установлен в 1930-х годах. Хаббловская оценка вызвала у космологов смущение сродни тому, которое испытывает пасынок при мысли, что он старше новой жены своего отца.


Проблема № 3: материя. Модель Леметра не могла объяснить, каким образом во Вселенной из ничего возникла материя. В своей статье 1931 года Леметр предвосхитил модную сегодня теорию «Вселенной из ничего», ссылаясь на «квантовые колебания» первичного атома как на возможный механизм происхождения космоса. Но, как и сегодня, так и тогда, физики с подозрением отнеслись к идее рождения Вселенной ex nihilo. Слишком уж сильно это напоминало библейское сотворение мира. Несмотря на то что Леметр был католическим священником, теологические обертоны модели немало его смущали, и он всеми силами старался от них дистанцироваться51. Но их было невозможно игнорировать.


Проблема № 4: принцип. Хуже всего было то, что модель Леметра шла вразрез с предположением, которое астрономы называют «совершенным космологическим принципом», распространяющим принцип Коперника за пределы Солнечной системы на всю Вселенную. Совершенный космологический принцип всего лишь развивает идею заурядности точек в пространстве применительно к событиям в пространстве и времени, т. е. в пространстве-времени. (Согласно теории относительности Эйнштейна, пространство и время представляют собой единое целое.) Таким образом, рождение Вселенной – самое особое событие в ее истории – противоречит совершенному космологическому принципу, который утверждает, что ни одна точка в пространстве и ни одно событие во времени не могут претендовать на какую бы то ни было исключительность.

Британский космолог Фред Хойл счел гипотезу первичного атома Леметра настолько возмутительной, что в 1949 году в насмешку окрестил ее Big Bang, подразумевая, очевидно, британский эвфемизм для оргазма. Но ему было мало высмеять модель Леметра – Хаббла. Вместе со своими коллегами Томми Голдом и Германом Бонди Хойл решил разработать собственную альтернативную модель, такую, которая разрешила бы все эти сбивающие с толку проблемы.

Те, кто не изучает прошлое, обречены его повторить.

Джордж Сантаяна

Хойл, Голд и Бонди сдружились в Британском адмиралтействе, где работали во время Второй мировой войны. Однажды вечером, уже после войны, они посмотрели фильм «Глубокой ночью» (Dead of Night), положивший начало новому жанру психологического хоррора. В картине кошмарный сон повторяется в виде событий реальной жизни, которые, в свою очередь, оказываются кошмарным сном. Кажется, главный герой обречен переживать этот цикл снова и снова, в вечном дежавю.

Фильм потряс Голда. Ученый задался вопросом: а что, если существует некое подобие «космической репетиции», повторяющийся цикл, который можно рассматривать как альтернативу Большому взрыву? Вскоре он показал, что вечная Вселенная, постоянно создающая новую материю, позволяет объяснить удаление далеких галактик, которое обнаружил Хаббл. В вечной Вселенной нет неловких проблем с возрастом и нет нарушения совершенного космологического принципа. Модель получила название теории стационарной Вселенной. Сама идея была далеко не нова, появляясь в различных вариациях на протяжении тысячелетий; новым в этой модели было то, что она предполагала непрерывное образование новой материи по всему космическому пространству.

Модель стационарного состояния Вселенной была полной противоположностью модели Большого взрыва. Если Большой взрыв предполагал некое начало, то стационарная модель в таковом не нуждалась. В первой модели Вселенная молода, даже слишком молода; во второй она вечна. И если Большой взрыв подразумевал, что весь космос произошел из «первичного атома», то в стационарной модели такой бессмыслицы не было.

Тем не менее в модели стационарной Вселенной также не обошлось без ухищрений. Поскольку изменение Вселенной во времени было практически установленным фактом, приверженцы модели позволили космосу со временем меняться, но постулировали непрерывное образование небольшого количества новой материи, которая обеспечивала постоянную плотность космического пространства. Они утверждали, что такое образование материи – очень малыми темпами – гораздо правдоподобнее, чем возникновение из бесконечно малой точки в ходе единичного события. Хойл поэтически описывал это как «один атом в столетие в объеме, равном Эмпайр-стейт-билдинг». Такое количество новой материи невозможно обнаружить экспериментальным путем, что надежно защищало модель от опровержения путем наблюдений.

Так откуда же берется новая материя в модели стационарной Вселенной? Она материализуется из пустого пространства и конденсируется, формируя звезды в ходе ядерного синтеза, который в конце 1940-х годов еще был плохо изучен. Таким образом, расширяющаяся Вселенная постоянно рождает новые галактики, при этом каким-то магическим образом сохраняя среднее расстояние между ними. Это было довольно изощренно и витиевато, но для многих ученых более приемлемо, чем идея происхождения Вселенной ex nihilo (из ничего), как это предполагала теория Большого взрыва.

Модель стационарного состояния Вселенной позволяла объяснить даже открытую Хабблом зависимость между расстоянием и лучевой скоростью. Наконец, она полностью подчинялась принципу Коперника и, уж конечно, не напоминала теорию сотворения мира из Книги Бытия, 1: 1.

Модель вечной Вселенной, циклически повторяющей процесс творения, по одному атому за раз, в глубинах космической ночи, могла посоперничать с самыми дерзкими голливудскими сценариями и требовала немалой доли художественного воображения.

42.Henrietta Swan Leavitt and Edward C. Pickering, “Periods of 25 Variable Stars in the Small Magellanic Cloud,” Harvard College Observatory Circular 173 (1912): 1–3, http://adsabs.harvard.edu/abs/1912HarCi.173….1L.
43.Здесь используется бытовое определение яркости. Строго говоря, речь идет о потоке излучения. – Прим. науч. ред.
44.Harlow Shapley and Heber D. Curtis, “The Scale of the Universe,” Bulletin of the National Research Council 2, pt. 3, no. 11 (1921): 217, http://adsabs.harvard.edu/abs/1921BuNRC…2..171S.
45.V. M. Slipher, “Nebulae,” Proceedings of the American Philosophical Society 56 (1917): 403–9, http://adsabs.harvard.edu/abs/1917PAPhS..56..403S.
46.Barbara Wolff, “The Nobel Prize in Physics 1921: What Happened to the Prize Money?” Albert Einstein in the World Wide Web, March 2016, www.einstein-website.de/z_information/nobelprizemoney.html.
47.E. Hubble, “A Relation Between Distance and Radial Velocity among Extra-Galactic Nebulae,” Proceedings of the National Academy of Sciences 15, no. 3 (1929): 168–73, http://adsabs.harvard.edu/abs/1929PNAS…15..168H.
48.В 2018 году Международный астрономический союз рекомендовал добавить в название закона фамилию Леметра. – Прим. науч. ред.
49.Cormac O’Raifeartaigh et al., “Einstein’s steady-state theory: an abandoned model of the cosmos,” https://arxiv.org/pdf/1402.0132.pdf.
50.Здесь сыграли роль и другие факторы, такие как искажения, свойственные фотографическим пластинам, которые использовал Хаббл. См.: David N. Spergel, Michael Bolte, and Wendy Freedman, “The age of the universe,” Proceedings of the National Academy of Sciences 94, no. 13 (1997): 6579–84, http://www.pnas.org/content/94/13/6579.full.
51.Dominique Lambert, The Atom of the Universe: The Life and Work of Georges Lemaître (Kraków: Copernicus Center Press, 2015).

Бесплатный фрагмент закончился.

399 ₽
Возрастное ограничение:
12+
Дата выхода на Литрес:
11 сентября 2019
Дата перевода:
2019
Дата написания:
2018
Объем:
431 стр. 69 иллюстраций
ISBN:
978-5-0013-9163-0
Переводчик:
Правообладатель:
Альпина Диджитал
Формат скачивания:
epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip

С этой книгой читают

Новинка
Черновик
4,9
176