Читать книгу: «Нереальная реальность – 2. Книга вторая. Настоящее», страница 3

Шрифт:

Глубокий подход к пониманию квантовой механики предложил Ричард Фейнман.

Представьте себе, что вам надо пересечь комнату по оптимальному маршруту. Для решения этой несложной практической задачи в классическом мире вы просто пойдете по кратчайшему пути от точки А до точки В.

В квантовом мире такой подход неприемлем. В нём вы должны учесть все возможные пути, соединяющие А и В. Не просто прямые, удобные, оптимальные, кратчайшие дороги, а буквально все. Все внутрикомнатные и внутридомовые, внутрирайонные и внутригородские траектории, вообще все возможные варианты прохождения по Земле, в том числе через Северный Полюс и вершину Эвереста. Но это только начало.

Квантовая теория распространяется на всю Вселенную. Поэтому вы должны учесть также пути, которые ведут вас из одного конца комнаты в другой через Луну и Марс, ближайшую звезду и центр Млечного Пути, через Туманность Андромеды и даже те, которые распространяются назад во времени вплоть до момента Большого Взрыва.

Неважно, что практически все эти маршруты кажутся вам необычными, дурацкими, нереальными, противоречащими «здравому смыслу» и «житейскому опыту». По законам квантового мира надо учесть все пути без какого-либо исключения.

Рассмотрев такой сценарий, Фейнман проделал сложнейшие вычисления, называемые функциональным интегрированием. Он приписал каждому пути определённую математическую величину. Сложение величин всех возможных путей дало вероятность перехода из точки А в точку B в соответствии с постулатами квантовой механики. Проще говоря, учёный произвел математическое суммирование всех возможных траекторий.

Итог, полученный Фейнманом, оказался поистине поразительным. Выяснилось, что сумма величин, включающих пути, большинство из которых прямо нарушают законы Ньютона и Эйнштейна, в среднем уравновешивалась и давала очень небольшое число. Но, самое главное заключалось в том, что наибольшей итоговой величиной обладал тот самый первый путь на основе классической физики, когда вы просто не задумываясь пересекаете комнату по оптимально короткому маршруту.

Это чрезвычайно важный научный результат.

Получается, что путь, основанный на «здравом смысле», является наиболее вероятным с точки зрения квантовой механики.

Говоря по-другому, как бы странно это ни казалось, каждый раз просто идя по комнате, вы каким-то неведомым образом сопоставляете и исследуете все пути, ведущие к далёким звёздам и Большому Взрыву, суммируете их, и останавливаете свой выбор на наиболее вероятном. Причём путь, который привел бы вас прямиком в другую галактику, отклонён от классического на очень незначительную величину. Но, на наше счастье, эта дорога очень маловероятна, иначе все земляне уже давно бы разбрелись по просторам Вселенной.

И это не фантастическая гипотеза. Это сама природа квантовых флуктуаций, представляющих пути, сумма которых весьма мала.

Проверенные математические способы формулировки квантовой теории сегодня базируются именно на интегралах по траекториям. Поэтому можно утверждать, что наше представление о реальности, основанное на «здравом смысле», на поверку оказывается всего лишь наиболее вероятным состоянием из бесконечного числа возможных.

В мире очень немного людей, кто понимает квантовую механику на интуитивном уровне, то есть улавливает самую суть того, что в действительности происходит вокруг нас. И это вполне объяснимо, так как такое понимание практически полностью разрушает привычное представление о реальности.

Сужу по собственному опыту. Чем больше я стал разбираться в квантовой механике, тем нелепее она для меня выглядит. Но верность этой теории неоднократно измерена с высочайшей точностью. Несмотря на кажущуюся абсурдность, она является самой точной физической теорией в современной науке.

Мне почему-то кажется, что дальнейшее развитие квантовой физики, неизбежно приведёт к ещё более потрясающим результатам. Наука только начинает разбираться в истинной структуре Мироздания. Не удивлюсь, если более совершенная теория будет ещё сильнее противоречить «здравому смыслу».

Если вы мало что поняли, прочитав эту главу, не переживайте – именно так и должно быть.

Квантовая механика по своей сути не приспособлена к осознанию именно человеческим мозгом. Наш организм эволюционирует в классическом мире, мир лёгких частиц – не наш. Поэтому в квантовой теории немудрено запутаться даже самому проницательному читателю. В этом вы равны, например, тому же Эйнштейну. Главное в другом. Для понимания квантовой физики совершенно не обязательно вызубрить соответствующие уравнения, надо стремиться интуитивно уловить её принципы. А это большая проблема.

Чёткого понимания ни природы Реальности, ни реальности Природы у нас пока что нет.

Глава 7. Парадоксы квантового мира

Мир квантовой механики таит в себе множество удивительных загадок. Одним из примеров является парадокс Эллсберга10.

Представьте такую ситуацию. В непрозрачную ёмкость кладут 90 одинаковых красных, чёрных и жёлтых шаров. Известно, что красных из них ровно 30. Количество чёрных и жёлтых неизвестно. Вам предлагают два раза поспорить о том, шар какого цвета будет вытащен наугад. В каждом споре у вас есть два альтернативных варианта выбора.

В первом споре:

Вариант №1 – вы победите, если случайно достанут красный шар.

Вариант №2 – вы победите, если случайно достанут чёрный шар.

Во втором споре:

Вариант №3 – вы победите, если случайно достанут красный или жёлтый шар.

Вариант №4 – вы победите, если случайно достанут чёрный или жёлтый шар.

Признаюсь, когда я впервые познакомился с парадоксом Эллсберга, то практически сразу, можно сказать, интуитивно, выбрал вариант №1 в первом споре и вариант №4 во втором. Не удивлюсь, если такой же выбор сделали вы. Во всяком случае, подавляющее большинство людей предпочитают именно эти варианты пари, другие альтернативы выбирают очень редко.

Подобные результаты теста труднообъяснимы. Даже поверхностный математический расчёт показывает, что нет никаких объективных оснований предпочесть один вариант другому. Во всех случаях шансы выиграть спор примерно равны. Следовательно, все четыре возможных альтернативы должны получать примерно по 25% голосов тестируемых. Тем не менее, большинство людей выбирает вполне определённую комбинацию №1 и №4. Но почему?

Видимо, дело в том, что в этом тесте человеческое сознание сталкивается с логикой квантового мира и в этот момент происходит нечто необычное.

Вначале испытуемый имеет дело с вероятностью. Он быстро просчитывает, что шанс случайно вытащить красный шар составляет 33,3%.

Но на следующем этапе теста испытуемый сталкивается с неопределённостью. Он не может рассчитать вероятность получения нужного шара. Соотношение чёрных и жёлтых шаров может быть и 30 к 30, и 59 к 1. Следовательно, совершая выбор, надо объединить известную вероятность с неизвестной. Классическая логика принятия решения перестаёт работать.

Но на основании чего делается выбор, как правило, совершенно математически некорректный? Напрашивается почти фантастическое объяснение. Неужели большинство людей строит свой выбор на логике квантового мира, как раз известного своей парадоксальностью?

Когда учёные просчитали на компьютере, какие из вариантов спора предпочтительны с точки зрения теории квантовой вероятности, то получили ожидаемый, но от этого не менее удивительный ответ – первый и четвёртый. Чем это объяснить? Пока что совершенно непонятно.

Зато, некоторые квантовые загадки физикам, возможно, удалось решить. Так, в частности, сегодня сформулировано достаточно правдоподобное объяснение неопределённого состояния нашего кота в коробке.

Решение связано с хорошо известным явлением декогеренции, при котором любая система неизбежно смешивается с внешней средой.

Смысл в том, что при проведении эксперимента невозможно абсолютно изолировать кота от внешнего мира. Он все равно контактирует с коробкой, воздухом, элементарными частицами, космическим излучением. И все эти взаимодействия неизбежно искажают волновую функцию.

Любой внешний контакт может вызвать её коллапс. И тогда она естественным образом распадается на две не взаимодействующие волновые функции мёртвого и живого кота. А это значит, что кот уже жив или мёртв до самого акта наблюдения – открытия коробки.

Чтобы кот находился в Суперпозиции, его волновая функция должна быть строго синхронизирована. Это состояние называется когеренцией. Его можно создать в очень сложной лаборатории, но в реальном мире полностью изолировать объект от окружающей среды вряд ли возможно.

Это достаточно убедительное объяснение, однако, оно по-прежнему не даёт ответа на главные вопросы.

Как Природа «выбирает» в какое состояние должна коллапсировать волновая функция?

Кто или что определяет итоговое состояние кота?

Декогеренция показывает разделение двух волновых функций, но ответа на главный вопрос – жив кот или мёртв – по-прежнему нет.

Более того, «злоключения» кота Шрёдингера на этом не закончились. Таинственный квантовый мир припас ещё одну, связанную с ним, загадку, известную как парадокс друга Вигнера11.

Юджин Вигнер усложнил мысленный эксперимент с котом и на выходе получил результат, ещё более шокирующий, чем изначальный. Суть модернизированного опыта в следующем.

Допустим, когда экспериментатор открывает ящик, он обнаруживает состояние «атом не распался, кот жив». Учёный абсолютно убеждён в этом, для него это неоспоримый факт, он лично видит довольного мурлыкающего кота.

В то же время вне лаборатории находится друг Вигнера, который пока что не знает, жив кот, или мёртв. Для него по-прежнему система находится в состоянии Суперпозиции. Но как только Вигнер сообщит ему результат эксперимента, друг также признает кота живым.

Теперь предположим, что друзей у учёного несколько. Разумеется, каждый из них признает кота живым лишь тогда, когда получит абсолютно достоверную информацию о реальном состоянии животного от своего друга-экспериментатора.

А что если друзей очень-очень много, что если с Вигнером дружит всё человечество или, того хуже, многочисленные инопланетные учёные?

И здесь возникает парадоксальный нюанс.

Получается, что сколь долго не делись информацией с друзьями, в бескрайнем космосе всегда найдётся хоть кто-то, кто не знает истинное состояние кота и уверен, что система всё ещё находится в состоянии Суперпозиции.

То есть, объективно, кота можно будет признать достоверно живым лишь тогда, когда о результате эксперимента будет сообщено всем без исключения наблюдателям во Вселенной, что трудно реализуемо, если вообще возможно в принципе.

Но до тех пор в масштабе Космоса кот Шрёдингера всегда остаётся одновременно полуживым и полумёртвым.

Глава 8. Принцип неопределённости Гейзенберга12

В квантовой механике частицы не движутся по заданным траекториям, как в классической физике Ньютона. Движение элементарной частицы определяется её волновой функцией, развёрнутой в пространстве.

Мы никогда не можем быть уверены в исходном состоянии квантовой частицы, и не способны установить её точного местоположения и параметров движения. Более того, чем лучше мы знаем одну из характеристик частицы, тем меньше нам известно о другой. Грубо говоря, если мы знаем точное местоположение элементарной частицы, мы не имеем ни малейшего представления об её скорости. Если же мы вычислим её скорость, мы не способны сказать, где она находится.

Всё вышесказанное вытекает из принципа неопределённости, который был сформулирован Вернером Гейзенбергом в 1927 году.

Неопределённость состоит в том, что мы можем знать, где находится квантовая частица в пространстве, или как она движется, но мы не можем знать то и другое одновременно. Какую бы точную аппаратуру для вычисления мы не использовали, результата не будет. Дело ни в погрешности измерения, ни в технологической примитивности приборов, это фундаментальное свойство Вселенной, вплетённое в саму ткань физических законов. Мы не способны предсказать, где будет находиться квантовая частица в каждый конкретный момент времени.

Что мы можем определить точно, так это вероятность того, где она будет находиться. Иногда вероятность равна 1, то есть становится определённостью. Тогда прогнозируемый результат будет на 100% получен, что можно использовать на практике при создании квантовых приборов.

Согласно принципу неопределённости, частица не существует, пока её положение не измерит наблюдатель. То есть, пока этого не произошло, частица одновременно находится везде и нигде. Это потрясающее свойство квантового мира в корне противоречит нашему представлению о наблюдаемой реальности.

Вокруг вас множество хорошо знакомых материальных объектов и все они ведут себя вполне определённым образом. Стол не превращается в стул, а затем в шкаф. Вы точно можете предсказать, что Солнце не «зависнет» в одной точке неба на два дня. Потому что есть фундаментальные физические законы классического мира. Исходя из этого, вы уверенно знаете, как могут и как не могут «вести себя» окружающие вас материальные объекты. На основании такого, вполне справедливого заключения, вам кажется, что и всё остальное во Вселенной должно подчиняться, пускай необычным и сложным, но все-таки достаточно определённым правилам.

Когда выясняется, что на самом фундаментальном уровне реальности царит полная неразбериха, это шокирует неподготовленного читателя. Квантовый мир кажется не просто загадочным, а пугающим, противоречащим самому фундаменту Природы.

Тем не менее, факты игнорировать невозможно. Нашим миром правит принцип неопределённости. Природа по какой-то причине ограничила нашу способность предсказывать будущее. Мы не способны адекватно оценить не то что дальнейшее, но даже текущее состояние Вселенной.

Сейчас, когда вы читаете эти строки, вокруг вас в буквальном смысле этого слова бурлит невообразимо запутанная, необычайно сложная и недоступная интуитивному пониманию квантовая жизнь, где абсолютно ничто не определено. Но именно на том, недоступном вашему восприятию уровне, располагаются истинные кирпичики Мироздания.

Все, окружающие вас большие и привычные материальные объекты, не более, чем проекции истинной реальности. И эта настоящая реальность – неопределённая. Определённой, фиксированной, она становится лишь в момент измерения внешним наблюдателем, в том числе, вами лично.

Поняв суть принципа неопределённости Гейзенберга, создаётся впечатление, что наш мир специально устроен так, что в нём никто и никогда не способен предсказать будущее.

Глава 9. Квантовые «чудеса»

Физика разрешает «чудеса».

Согласно квантовой теории, существует минимальная вероятность того, что может случиться всё, что угодно.

Можно даже просчитать, например, вероятность того, что вы пройдёте сквозь стену, нарушив при этом принцип запрета Паули. Шансов у вас микроскопически мало, но они объективно есть.

Пробуйте. Один раз в триллион лет у вас наверняка получится.

Объясняемые физикой чудеса возможны.

Более того, само зарождение нашей Вселенной следует признать уникально необычным событием.

Возможно, момент Большого Взрыва был «чудесным» квантовым переходом вещества в новое состояние.

В любом случае, наш мир появился в результате очень маловероятного стечения обстоятельств.

Глобальная мечта разумного создания в нашей Вселенной – способность овладеть квантовыми вероятностями.

Тогда станут реальными самые фантастические идеи, такие как сверхсветовые путешествия или перемещение во времени.

Например, достижение далёких звёзд за считанные секунды очень маловероятно, но прямо не запрещено квантовой физикой. Если овладеть такой технологией, то любое невозможное станет возможным.

Конечно, человечество ещё не готово взяться за решение задачи по искусственному изменению вероятностей происхождения событий.

Но, как знать, может, наши далёкие потомки подчинят себе законы квантового мира.

Артур Кларк13 совершенно справедливо писал, что, если авторитетный учёный утверждает, что нечто невозможно, он почти наверняка не прав, поскольку любая достаточно ушедшая вперёд технология практически неотличима от магии.

Почему возможность необычных явлений очень мала?

Во-первых, волна вероятности обычно имеет значительную величину в ограниченной области пространства и ослабевает по мере удаления от неё.

Во-вторых, что ещё более важно, чрезвычайно маловероятно, что не одна, а огромное множество частиц одномоментно поведут себя экстремально. Поэтому в жизни мы не сталкиваемся с такими вероятностными проявлениями квантовой механики как самосборка разбитой чашки.

Волновая функция простирается далеко вглубь Космоса. Есть вероятность мгновенного перемещения вашего тела в любую точку Вселенной через 5 секунд. Это не противоречит законам квантовой физики. Но чрезвычайно маловероятно. Поэтому такие возможности люди просто игнорируют, как несбыточные.

Однако, не стоит забывать, что вы являетесь неделимой составляющей глобального квантового мира. Законы запутанности вполне применимы к частицам вашего тела. Всегда, когда кто-то наблюдает вас, происходит коллапс вашей волновой функции. Это означает, что частицы, взаимосвязанные с вашей волновой функцией в ту же секунду проявляют себя где-то ещё. Может быть, на другом краю Галактики. Задумайтесь об этом интересном и полностью научном факте.

Наблюдение вас здесь и сейчас может мгновенно повлиять на что-то, происходящее в миллиарде световых лет от Солнца и это влияние распространяется со сверхсветовой скоростью.

Это поразительный вывод, показывающий фундаментальное единство квантового мира.

Глава 10. Масса

Все окружающие нас объекты обладают массой. Мы воспринимаем этот факт, как само собой разумеющийся. Хотя на кажущийся простым вопрос «откуда возникает масса?», неподготовленному человеку ответить сложно.

На самом деле это очень принципиальный вопрос для физиков. До недавнего времени именно отсутствие ответа на него, не позволяло считать Стандартную модель Вселенной полной.

Действительно, почему некоторые элементарные частицы имеют массу, а другие нет? Откуда она появляется и почему так избирательно?

По какой причине масса отличается у разных частиц, причём, иногда, очень значительно? Например, верхний кварк тяжелее нейтрино в 600 млрд. раз.

Наконец, почему значение массы у каждой элементарной частицы строго определено?

В 1964 году Питер Хиггс14 предположил существование вездесущего квантового поля, пронизывающего весь реальный мир. Именно оно, позже названное полем Хиггса, наделяет объекты массой.

То есть, масса у элементарной частицы появляется вследствие её взаимодействия с полем Хиггса.

Механизм обретения массы похож на прилипание пыли к шарику, катящемуся по смазанной клеем поверхности. По мере своего перемещения по липкой плоскости, шарик становится тяжелее. Аналогично набирают вес частицы, перемещаясь в многомерном пространстве сквозь вязкое квантовое поле.

Таким образом, масса представляет собой сопротивление тела ускорению. В результате своих взаимодействий с вездесущим полем Хиггса элементарные частицы сопротивляются попыткам изменить их скорость и приобретают массу.

Почему частицы имеют различные массы?

Объяснение состоит в том, что разные виды частиц взаимодействуют с полем Хиггса по-своему. С физической точки зрения, чем труднее что-либо двигать, тем оно массивнее. Если частица слабо взаимодействует с полем Хиггса, плавно двигаясь через него, то сопротивление будет небольшим, и такая частица имеет малую массу. Наоборот, чем существеннее частица взаимодействует с полем Хиггса, тем большую массу она приобретает. Массы объектов очень разнообразны, потому что различные типы частиц взаимодействуют с полем Хиггса с большей или меньшей силой.

Все мы состоим из электронов, протонов и нейтронов. Когда вы перемещаетесь в пространстве, то движется не ваше тело, а электроны и кварки. Поле Хиггса, взаимодействуя с ними, препятствует их ускорению. И это «торможение» элементарных частиц вы ощущаете, как массу объекта, то есть вес вашего тела. Прилагаемые вами любые усилия ежесекундно борются с сопротивлением поля Хиггса.

Частица массы называется бозоном Хиггса. Он электрически нейтрален, поэтому при нормальных условиях обнаружить его очень сложно. Для этого надо на световой скорости «ударить» частицей с очень высокой энергией по полю Хиггса. Это вызовет его колебание и появление бозона – переносчика массы, который можно зарегистрировать.

Словно масса к элементарной частице, к бозону Хиггса «прилипло» название «частица Бога». На самом деле ничего сверхъестественного в нём нет. Это один из рядовых элементов Стандартной модели. Но – сверхважный. И, пожалуй, самый неуловимый во всей истории науки. В первую очередь, именно для подтверждения существования бозона был сконструирован самый масштабный и дорогостоящий прибор, когда-либо созданный человечеством – Большой адронный коллайдер.

Усилия тысяч учёных были сконцентрированы на поиске бозона Хиггса в течение многих лет. Это, пожалуй, была главная цель всей современной науки. Наконец, «частицу Бога» удалось «поймать».

О величайшем открытии было объявлено 4 июля 2012 года, то есть точно в день моего сорокалетия. И как после этого не поверить в мистику?

10.Эллсберг Даниель – американский экономист и общественный деятель.
11.Вигнер Юджин – американский физик и математик венгерского происхождения.
12.Гейзенберг Вернер Карл – немецкий физик-теоретик, автор многих фундаментальных работ по квантовой теории.
13.Кларк Артур Чарльз – британский писатель-фантаст, футуролог и изобретатель.
14.Хиггс Питер Уэйр – британский физик-теоретик, предсказавший существование бозона массы.

Бесплатный фрагмент закончился.

Возрастное ограничение:
16+
Дата выхода на Литрес:
06 апреля 2016
Объем:
260 стр. 1 иллюстрация
ISBN:
9785447470487
Правообладатель:
Издательские решения
Формат скачивания:
epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip

С этой книгой читают

Новинка
Черновик
4,9
166