Читать книгу: «Боковой амиотрофический склероз», страница 6

Шрифт:

Белковый трафик и гены, имеющие отношение к деградации

Начиная с идентификации первого гена ALS2, характерного для аутосомно-рецессивного вида (AR) БАС, наряду с отличительными убиквитинированными включениями, происходящими в двигательных нейронах при БАС, дисрегуляция белкового трафика и деградация (разрушение) белков оказываются причастны к процессу заболевания. К мутациям, происходящим в генах, участвующих в эндосомальном транспорте, относятся алсин (alsin, ALS2), белок B, связанный с везикуло-ассоциированным мембранным белком (VAMP-associated protein B, VAPB), хроматин-модифицирующий белок 2B (CHMP2B) и 5-фосфатаза фосфоинозитида (FIG4); к генам, участвующим в системе убиквитин-протеасомы (UPS), относятся убиквилин 2 (ubiquilin 2, UBQLN2), секвестосома 1 (SQSTM1) и сигма-нонопиоидный внутриклеточный рецептор 1 (SIGMAIR1), а аутофагия преимущественно обусловлена мутациями в оптинейрине (OPTN), валозин-содержащем белке (VCP), и tank-соединительной киназе 1 (TBK1). Существует некоторое перекрытие между этими тремя биологическими путями, которые также имеют отношение к БАС, обусловленному действием SOD1 и C90RF72.

ALS 2/БАС2: алсин (ALS2)

Ген алсин (ALS2) изначально был выявлен при помощи анализа групп сцепления генных локусов (linkage analysis) в родственных семействах Туниса и Саудовской Аравии (Yang et al., 2001; Hadano et al., 2015). Большинство мутаций приводило к белковому усечению, что позволяет сделать предположение о потере функции. Считается, что алсин играет роль в активации Rab5 GTP-аз. Значение Rab5 первостепенно для эндосомального трафика, а в мышиных моделях с нокаутом алсина нейроны показали увеличенное эндосомальное слияние и деградацию, но сниженный уровень подвижности (Lai et al., 2009; Lai et al., 2006). Одним из компонентов эндосомы является AMPA-рецептор GluR2, значения которого сокращаются у мышиных моделей с нокаутом алсина (Lai et al., 2006).

ALS8/БАС8: белок B (VAPB), ассоциированный с везикуло-ассоциированным мембранным белком (VAMP)

Анализ групп сцепления крупного семейства из Бразилии впервые определил белок VAPB как причинный ген БАС (Nishimura et al., 2004), а p.P56S-мутация была выявлена у многочисленных семей из Бразилии, что указывает на какую-то общую основу (Nishimura et al., 2005). Были сообщения о дополнительных мутациях, хотя и не все вариации были изолированными от заболевания (Nishimura et al., 2005; Chen et al., 2010; Kabashi et al., 2013; van Blitterswijk et al., 2012). Белок VAPB является интегральным белком 2-го типа мембраны эндоплазматического ретикулума, который принимает участие во внутриклеточном трафике и ответной реакции несвернутого белка (Lev et al., 2008), а также в регулировании взаимодействия между эндоплазматическим ретикулумом и митохондрией (Stoica et al., 2014). Однако p.P56S-мутантный белок не вызывает ответную реакцию несвернутого белка, перемены в поглощении кальция в митохондрии и нарушение антероградного аксонального транспорта митохондрии (Kanekura et al., 2006; De Vos et al., 2012; Morotz et al., 2012).

ALS17/БАС17: хроматин-модифицирующий белок 2B (CHMP2B)

Мутации в CHMP2B вначале были определены в 2 вероятных случаях семейного БАС и в последующих 3 случаях спорадического БАС; большинство из мутаций выявляли преобладающий фенотип нижнего двигательного нейрона (Parkinson et al., 2006; Cox et al., 2010). Белок CHMP2B является компонентом ESCRT-III системы эндосомального трафика, сортирующей «грузы» в мультивезикулярные тельца. Не так давно 4 новейших мутации были выявлены в случаях БАС, кажущихся спорадическими, и они располагались в домене, который необходим для формирования мультивезикулярных телец (van Blitterswijk et al., 2012). В клеточных моделях мутантный CHMP2B приводил к формированию крупных вакуолей и возрастанию LC3-II маркера аутофагии, подразумевая дисрегуляцию аутофагии как механизм, способствующий развитию БАС.

ALSI I: фосфоинозитидная 5-фосфатаза (FIG4)

Мутации в FIG4 вначале определялись как являющиеся причинным фактором в болезни Шарко – Мари – Тута по типу 4J, хотя у одной семьи наблюдался клинический фенотип, напоминающий БАС. Скрининг семейных и спорадических случаев БАС определил 9 вариантов, 6 из которых показывали нарушение в функции дрожжей (Chow et al., 2009). FIG4, также известный как SAC3, регулирует уровни комплекса PI (3,5) P2 и тем самым контролирует ретроградный трафик энодосомальных везикул в область Гольджи. Мутантные белки показывали потерю фосфатазной активности, неправильную локализацию и неспособность соединяться с PI (Online Mendelian Inheritance in Man, 2016; Andersen, 2006) P2-комплексом. Дальнейший скрининг популяций больных из Италии и Тайваня не смог обнаружить какие-либо новейшие варианты, хотя лишь 80 спорадических БАС и 15 семейных БАС проходили скрининг в каждом исследовании (Tsai et al., 2011; Verdiani et al., 2013). Оценка патологии по переносчикам мутации не проводилась; однако не было показано, что FIG4 локализуется в спорадическом виде БАС неправильно (Kon et al., 2014).

ALS15/БАС15: убиквилин 2 (UBQLN2)

При анализе групп сцепления генных локусов крупного семейства, насчитывающего несколько поколений, был идентифицирован UBQLN2. Скрининг дополнительных случаев семейного БАС, исключавших передачу от мужчины к мужчине, позволил обнаружить еще 4 мутации; они все были расположены в PXX-области повтора белка (Deng et al., 2011). Дополнительный скрининг определил последующие варианты, примыкающие к PXX-области повторов или расположенные в ней (Williams et al., 2012; Gellera et al., 2013). Было показано, что мутации приводят к прерыванию и разрушению пути деградации белков, которое осуществляется через недостаточное соединение с протеасомой (Chang, Monteiro, 2015) и вызывает неправильную локализацию OPTN из Rab-11-позитивных эндосомальных везикул (Osaka et al., 2015), а также потенциально может повредить РНК-метаболизм через утрату соединения UBQLN2 с hnRNP-белками, в том числе с hnRNPA1 (Gilpin et al., 2015).

FTDALS3: секвестосома 1 (SQSTM I)

Ген SQSTM1, или p62, представляет собой убиквитин-соединительный белок, который играет роль в деградации белка, осуществляемой за счет протеасомы и аутофагии, и его можно найти в характерных убиквитиновых включениях у больных БАС. Скрининг этого гена выявил множественные мутации как в семейных, так и в спорадических случаях БАС (Fecto et al., 2011). Дальнейшие мутации были замечены у больных БАС, некоторые в сочетании с костной болезнью Пеждета, о которой известно, что она также индуцируется мутациями в SQSTM1 (Teyssou et al., 2013; Kwok et al., 2014). В данио-модели, в которой нокаутирован эндогенный SQSTM1, изучаемая особь продемонстрировала поведенческие и аксональные патологии, а также прерванную аутофагию, что было зафиксировано увеличением уровней mTOR (Lattante et al., 2015). Человеческий SQSTM1 был в состоянии спасать фенотип, но часто обнаруживаемая мутация, p.P392L, не могла делать это.

ALS16/БАС16: сигма нонопиоидный внутриклеточный рецептор 1 (SIGMAR 1)

Изначально 3-UTR варианты были выявлены в нескольких семействах с аутосомно-доминантной лобно-височной деменцией, сопровождаемой БАС (FTD-ALS), или c лобно-височными деменциями (FTD), что позволило предположить, что патогенность передавалась через механизм изменения устойчивости мРНК (Luty et al., 2010). Однако, используя метод картирования гомозиготности, впоследствии была выявлена миссенс-мутация в SIGMAR1, которая изолировалась в крупном генетически родственном семействе с признаками ювенильного (юношеского) БАС аутосомно-рецессивного вида (ARJALS) (Al-Saif et al., 2011). SIGMAR1 является шапероном эндоплазматического ретикулума и производной единицей лигандо-регулируемого кальциевого канала и способствует транспорту митоходриального кальция через IP3-рецептор; мутация в SIGMAR1 вызывает формирование цитоплазматических скоплений, сокращение продуцирования ATP и последующее понижение протеасомной активности (Fukunaga et al., 2015). Однако все еще предстоит точно определить, способствует ли SIGMAR1 возникновению БАС аутосомно-доминантного вида.

ALS12/БАС12: оптинейрин (OPNT)

Мутации в OPNT вначале были определены методом картирования гомозиготности генетически родственных японских семейств с аутосомно-рецессивным БАС, что позволило выявить гомозиготную экзонную делецию (стирание) и гомозиготную нонсенс-мутацию (Maruyama et al., 2010). Последующий скрининг случаев семейных БАС определил 2 аутосомно-доминантных семейства, которые были гетерозиготными по отношению к миссенс-мутации. OPNT выполняет свою функцию через белок-белковые взаимодействия: он привязывается к убиквитину и UBQLN2, он является рецептором аутофагии (способствуя рекрутингу грузов к аутофагосомам), он необходим для выстраивания Гольджи (Kamada et al., 2014), и он также регулирует NF-kB сигналирование (Bansal et al., 2015). Последующий скрининг определил дополнительные гетерозиготные мутации в случаях спорадических БАС (van Blitterswijk et al., 2012) и аутосомно-рецессивных БАС (Beeldman et al., 2015; Goldstein et al., 2016).

ALS14/БАС14: валозин-содержащий белок (VCP)

Метод экзомного секвенирования итальянской семьи, насчитывающей 4 поколения, первоначально предположил наличие мутации валозин-содержащего белка (VCP) в качестве причины развития БАС (Johnson et al., 2010). Впоследствии еще 4 варианта были идентифицированы в случаях семейных БАС, предоставляя тем самым дальнейшие подтверждения того, что VCP ассоциируется и связан с БАС. Валозин-содержащий белок (VCP) представляет собой ААА+ (расширенное семейство АТФаз, связанное с различными клеточными действиями) белок АТФаз (ATPase), который вовлечен в целый ряд клеточных функций, включая регулирование протеасомальной деградации убиквитинового белка в мультимерных комплексах и таргетинг субстратов в аутофагосомы (Meyer, Weihl, 2014). Несмотря на то что скрининг не смог выявить какие-либо мутации валозин-содержащего белка в некоторых популяциях (Miller et al., 2012; Williams et al., 2012; Tiloca et al., 2012), потенциальные мутации были выявлены в других популяциях, а также в случаях спорадического БАС (Koppers et al., 2012; Abramzon et al., 2012). Кроме того, мутации VCP (валозин-содержащего белка) ассоциируются с миопатией телец-включений, сопровождаемой ранним возникновением болезни Педжета и лобно-височной деменцией, а фибробласты, изолированные у больных, показали митохондриальное разъединение и сокращение выработки АТФ (Bartolome et al., 2013); эта особенность также отмечается при SIGMAR1-мутациях.

БАС с лобно-височной деменцией/FTDALS4: TANK-связывающая киназа (TBK 1)

Мутации в TBK1 вначале были определены посредством метода секвенирования экзомов в 2874 случаях БАС; преобладающие варианты были обнаружены в 1,097% случаев, а мутации с потерей функции – в 0,382% (Cirulli et al., 2015). За этим вскоре последовало второе исследование, в котором секвенирование 252 случаев семейного БАС установило 9 потерь функции и 4 миссенс-мутации (Cirulli et al., 2015). Мутации затем были обнаружены в случаях БАС, БАС-лобно-височной деменции (FTDALS) и лобно-височной деменции (FTD) (Gijselinck et al., 2015; Le Ber et al., 2015). Танк-связующая киназа (TBK1) играет роль как во врожденном иммунитете, так и в NF-kB сигналировании, а также в аутофагии. TANK-связующая киназа TBK1 соединяется и фосфорилирует БАС-ассоциированные белки OPTN и SQSTM 1, при этом показано, что мутанты TBK1 больше не соединяются с белком OPTN (Freischmidt et al., 2015).

Нарушение аксональной транспортировки

и цитоскелетная дисфункция

Нейроны являются чрезвычайно крупными клетками, которым необходим транспорт органелл, протеинов и РНК, получаемых из тел клеток и доставляемых по аксонам. Молекулярные моторы, такие как кинезины и динеин, направляют подобные «грузы» в микротрубки, чтобы осуществлять, соответственно, антероградную и ретроградную транспортировку. Хотя мутация, происходящая в p150 динактиновой подгруппе (p150 dynactin subunit), в мышиной модели привела к выработке нейродегенеративного фенотипа, мутации в этом гене не были обнаружены в БАС человека (Ahmad-Annuar et al., 2003; Vilarino-Guell et al., 2009). Однако метод экзосомного секвенирования позволил выявить некоторое количество цитоскелетных генов, в которых мутации были заявлены как являющиеся причиной БАС.

ALS5/БАС5: спатаксин (SPG II)

Полноэкзомное секвенирование (WES) двух пораженных заболеванием сиблингов (родных братьев или сестер), происходящих из неединокровного семейства, с подтвержденным ювенильным БАС аутосомно-рецессивного типа, установил лишь один ген, SPG11, в котором варианты были обнаружены в компаундном гетерозиготном состоянии (Daoud et al., 2012). Причастность гена наследуемого спастического парапареза, обычно ассоциируемого с белком теплового шока (HSP) с признаками истончения мозолистого тела черепа, ранее связывалась со скринингом гена-кандидата SPG11, в котором были выявлены мутации у 10 семейств с ARJALS (Orlacchio et al., 2010). Несмотря на то что точная функция белка не установлена, происходящие из индуцированных плюрипотентных стволовых клеток (iPSC-derived) нейрональные клетки с SPG11-мутациями демонстрировали наличие белка, совместно локализованного с цитоскелетом, а мутации вызывали аксональную неустойчивость и нарушение аксонального транспорта (Perez-Branguli et al., 2014).

ALS18/БА18: профилин I (PFN I)

Два БАС-семейства, насчитывающие несколько поколений, были установлены как переносящие мутации в PFN 1 гене, согласно данным полноэкзомного секвенирования (Wu et al., 2012). Расширение скрининга до дополнительных случаев БАС семейного вида позволило определить еще 3 мутации в 5 случаях семейного БАС, и p.E117G-вариант был идентифицирован на уровне очень низких частот у испытуемых контрольной группы. Дальнейший скрининг случаев БАС выявил дополнительные мутации и вариант (Ingre et al., 2013; Tiloca et al., 2013; van Blitterswijk et al., 2013; Smith et al., 2015). Затем метаанализ выявил связь варианта p.E117G с БАС, что позволило рассматривать этот вариант p.E117G как фактор риска (Fratta et al., 2014). Функция PFN1 заключается в конвертации мономерного актина в филаментный (волокнистый) актин, и также выявлено, что PFN1 локализуется в стресс-гранулах (Figley et al., 2014). Показано, что мутации PFN1 приводят к дестабилизации белка, тем самым способствуя потере функции, тогда как мутантный белок предстает в неправильно свернутом виде, что приводит к приобретению функции через искаженные белковые взаимодействия (Boopathy et al., 2015). Однако степень воздействия мутантного белка на формирование актина и динамику стресс-гранул все еще подлежит более точному установлению.

ALS22L/БАС22L: тубулин альфа 4А (TUBA4A)

Метод полноэкзомного секвенирования 363 носителей заболевания БАС семейного вида с последующим обременением редким вариантом позволил определить 5 случаев БАС с редкими вариантами в TUBA4A; они включали 4 миссенс-мутации и 1 нонсенс-мутацию, каждая из которых была закодирована в экзоне 4, в высококонсервативных аминокислотах, и эти мутации отсутствовали у 4300 контрольных участников исследования на Сервере вариантов экзом (Exome Variant Server, EVS) (Smith et al., 2014). В то время как дальнейшее секвенирование случаев БАС идентифицировало еще 1 вариант, функциональные исследования показали, что p.W407X нонсенс-мутант не локализуется в микротрубках, формируя вместо этого цитоплазматические включения, что приводит к прерыванию сборки и устойчивости микротрубок, через доминантно-негативный механизм. Последующий скрининг в китайской популяции БАС не смог идентифицировать какие-либо варианты (Li et al., 2015); данные по другим популяциям, несомненно, появятся по мере того, как опыты с использованием полногеномного экзомного секвенирования будут завершены.

Варианты промежуточного микрофиламента

Цитоскелетная дисфункция дальнейшим образом вовлекается в патогенез БАС через действие редких вариантов, которые идентифицируются в генах промежуточных микрофиламентов. Нейрофиламенты (нейроволокна) (легкие, средние и тяжелые) представляют собой основные структурные составляющие компоненты нейронального цитоскелета, и они наличествуют в характерных убиквитиновых белковых включениях. Скрининг генов-кандидатов определил редкие варианты по типу инсерции/делеции (вставки и удаления) в доменах KSP-повтора, относящихся к тяжелому гену нейрофиламента (neurofilament heavy gene, NEFH) в спорадических случаях БАС (Figlewicz et al., 1994; Tomkins et al., 1998; Al-Chalabi et al., 1999), тогда как единичная мутация «со сдвигом рамки» была идентифицирована в периферине (peripherin, PRPH1) (Gros-Louis et al., 2004). Тем не менее отсутствие мутаций в известных семейных случаях заболевания и способность показывать изолирование (сегрегацию) от болезни привели к понижению степени достоверности этих генов как локусов БАС.

Дополнительные локусы

Некоторые дополнительные локусы БАС были определены в начале 2000-х гг. Двум из них еще предстоит идентифицировать гены, которые ассоциируются с ними: ALS3 в chr18q21 и ALS7 в chr20q13 (Hand et al., 2002; Sapp et al., 2003). Еще 2 гена были определены в родословных семейного вида БАС, хотя в настоящее время прогнозируется, что их функциональное действие приводит к прерыванию нейронального развития и митохондриальной функции.

ALS19/БАС19: рецепторная тирозинкиназа 4 (ERBB4)

Полногеномное исследование японской семьи с аутосомно-доминантным БАС определило миссенс-мутацию в ERBB4 (Takahashi et al., 2013). Дополнительный скрининг установил такую же мутацию у семьи из Канады, не имеющей отношение к японской семье, и дальнейшую мутацию в БАС спорадического вида. Известно, что ERBB4 является рецепторной тирозинкиназой, которая активируется нейрегулином, что приводит к автофосфорилированию C-терминала. Мутации, происходящие в ERBB4, сокращали уровень автофосфорилирования. Было обнаружено, что ERBB4 локализуется в C-уплотнениях, образующихся из интернейронов, которые формируют синапсическую связь со спинальными двигательными нейронами (Gallart-Palau et al., 2014). Любопытен факт, что С-уплотнения не обнаруживаются в глазодвигательных нейронах, которые сохраняются при БАС, тогда как увеличение уровня нейрегулина в С-уплотнениях повышается в течение прогрессирования заболевания в модели трансгенной мыши с SOD1 G93A.

FTDALS2: суперспиральный домен-содержащий белок 10 (CHCHD10)

Изначально CHCHD10 был ассоциирован с БАС при полногеномном секвенировании семейства, выявлявшего клинические признаки, в том числе БАС (ALS), лобно-височной деменции (FTD), мозжечковой атаксии и миопатии (Bannwarth et al., 2014). Это обстоятельство привело к скринингу семейств с БАС и БАС с лобно-височной деменцией (ALS-FTD). Были выявлены некоторые дополнительные мутации (Dols-Icardo et al., 2015; Johnson et al., 2014), хотя и стало очевидно, что p.P34S-мутация была непатогенной, так как она также была обнаружена в таких же частотах у контрольных испытуемых (Marroquin et al., 2015). Функция CHCHD10 остается неизвестной; известно, что CHCHD10 локализуется в митоходрии. Фибробласты, полученые у членов семьи первоначальной родословной, показали множественные митохондриальные ДНК-делеции (удаления), нарушения респираторной цепи и структурно патологическую митохондрию, что позволило сделать вывод о том, что CHCHD10 может играть роль в респираторной цепи и (или) в устойчивости митохондриального генома (Bannwarth et al., 2014). Этот факт поддерживается дополнительным исследованием группы E.C. Genin et al. (2015), которое выявило не только потерю гребней и заживление митохондриального генома в фибробластах пациентов, но и невозможность апоптоза по причине неспособности выделять цитохром-С.

Генетика БАС оказывает существенное влияние на наше понимание заболевания и механизмов, задействованных в нейродегенерации. Большинство генов шифруют белки, участвующие в РНК-процессинге и путях деградации белков, системе убиквитин-протеасомы и аутофагии. Однако ни один из них, ни какие-либо иные задействованные пути не работают изолированно, а оказывают воздействие на другие клеточные процессы. Предполагаемые механизмы являются взаимно совместимыми, и наиболее вероятно, что многочисленные разрегулированные пути способствуют потере и гибели двигательных нейронов. Этот факт явно демонстрируется действием TDP-43, являющегося РНК-связующим белком, который неправильно локализуется из ядра, вызывая тем самым гибель ядерной функции, и скапливается в цитоплазме в качестве компонента характерных убиквитиновых включений.

Наряду с множественными генетическими причинами очевидно, что эти гены также причастны и к дополнительным расстройствам, не только к другим нейродегенеративным нарушениям, таким как лобно-височная деменция и атаксия, но и к миопатиям, костной болезни Педжета и глаукоме. Применение методов полногеномного масштабного секвенирования и полноэкзомного секвенирования в таких проектах, как 100 000 Проект геномов в Великобритании (genomicsengland.co.uk) или Project Mine Международного сообщества БАС (projectmine.com), потенциально смогут создать условия для более четкого понимания того, почему мутации гена у одного семейства представляют какой-либо конкретный клинический фенотип, тогда как другое семейство демонстрирует различные заболевания. Подобные методы исследования также продвинут наше понимание степени воздействия олигогенной наследственности при БАС.

В то время как семейные родословные явным образом демонстрируют наследственность по аутосомно-доминантному типу в классических БАС, отход от того, чтобы анализировать единичный ген в конкретное заданное время, особенно подчеркнул наличие мутаций во множественных БАС-генах, которые зарегистрированы у некоторых пациентов (van Blitterswijk et al., 2012). Скрининг крупной когорты больных БАС показал, что 14% семейного БАС и 2,6% случаев спорадического БАС имели более 1 потенциальной патогенной мутации в известном БАС-гене, и в этих случаях отмечался существенно более ранний старт развития заболевания (Cady et al., 2015). Эти данные также подчеркивают факт того, что в случаях БАС, кажущихся спорадическими, также отмечаются генетические мутации, как было засвидетельствовано при идентификации новых мутаций в случаях спорадического БАС после проведения полноэкзомного секвенирования групп из трех индивидуумов, состоящих из больных БАС и их двух незатронутых болезнью родителей (Steinberg et al., 2015; Chesi et al., 2013). Несмотря на то что в некоторых случаях эти мутации на самом деле могут представлять собой редкие мутации аутосомно-рецессивного типа, дополнительные методы WES- и WGS-секвенирования подобных случаев помогут найти объяснение тому генетическому вкладу в развитие заболевания, который был заметен в спорадических БАС и который оценивается в 61% (Al-Chalabi et al., 2010).

Существует еще одна общепризнанная теория возникновения БАС – глютаматная. Показано, что взаимодействие мутантной супероксиддисмутазы-1 с астроцитарным глютаматным переносчиком нарушает обратный захват глутамата и поэтому формируется БАС. Известно, что при БАС в области моторных нейронов наблюдается увеличение уровня концентрации глутамата (моторные нейроны, как известно, являются глутаматергическими нейронами). Увеличение глутамата не связано ни с интенсивностью нейронного повреждения, ни с распространением клинического компромисса, наблюдаемого в БАС. Это явление связывают с уменьшением главного транспортера глутамата в мозге ЕААТ2, избирательного для астроглии и служащего для очищения глутамата. Сверхстимуляция глутаматных рецепторов ведет к массивному притоку кальция в нейроны. Но глутамат в высоких концентрациях в ЦНС не ограничивается БАС, при других первичных дегенеративных нарушениях ЦНС (болезни Альцгеймера, Паркинсона, Хантингтона) также отмечаются высокие уровни глутамата в специфических областях, где нейроны находятся в стрессе (Марфунин, 2012). Формируется глутаматная эксайтотоксичность – запуск повреждения нейронов под воздействием глутамата (вещества, переносящего «информацию» в нервной системе). Однако точные механизмы, посредством которых повреждение данных генов может приводить к развитию болезни, до настоящего времени не ясны.

Бесплатный фрагмент закончился.

Жанры и теги
Возрастное ограничение:
16+
Дата выхода на Литрес:
11 мая 2022
Объем:
570 стр. 85 иллюстраций
ISBN:
9785005300577
Правообладатель:
Издательские решения
Формат скачивания:
epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip

С этой книгой читают