Читать книгу: «The Notebooks of Leonardo Da Vinci. Complete», страница 6

Шрифт:

101

Begin from the line m f with the eye below; then go up and do the same with the line n f, then with the eye above and close to the 2 gauges on the ground look at m n; then as c m is to m n so will n m be to n s.

If a n goes 3 times into f b, m p will do the same into p g. Then go backwards so far as that c d goes twice into a n and p g will be equal to g h. And m p will go into h p as often as d c into o p.

[Footnote: The first three lines are unfortunately very obscure.]

102

I GIVE THE DEGREES OF THE OBJECTS SEEN BY THE EYE AS THE MUSICIAN DOES THE NOTES HEARD BY THE EAR.

Although the objects seen by the eye do, in fact, touch each other as they recede, I will nevertheless found my rule on spaces of 20 braccia each; as a musician does with notes, which, though they can be carried on one into the next, he divides into degrees from note to note calling them 1st, 2nd, 3rd, 4th, 5th; and has affixed a name to each degree in raising or lowering the voice.

103

PERSPECTIVE.

Let f be the level and distance of the eye; and a the vertical plane, as high as a man; let e be a man, then I say that on the plane this will be the distance from the plane to the 2nd man.

104

The differences in the diminution of objects of equal size in consequence of their various remoteness from the eye will bear among themselves the same proportions as those of the spaces between the eye and the different objects.

Find out how much a man diminishes at a certain distance and what its length is; and then at twice that distance and at 3 times, and so make your general rule.

105

The eye cannot judge where an object high up ought to descend.

106

PERSPECTIVE.

If two similar and equal objects are placed one beyond the other at a given distance the difference in their size will appear greater in proportion as they are nearer to the eye that sees them. And conversely there will seem to be less difference in their size in proportion as they are remote from the eve.

This is proved by the proportions of their distances among themselves; for, if the first of these two objects were as far from the eye, as the 2nd from the first this would be called the second proportion: since, if the first is at 1 braccia from the eye and the 2nd at two braccia, two being twice as much as one, the first object will look twice as large as the second. But if you place the first at a hundred braccia from you and the second at a hundred and one, you will find that the first is only so much larger than the second as 100 is less than 101; and the converse is equally true. And again, the same thing is proved by the 4th of this book which shows that among objects that are equal, there is the same proportion in the diminution of the size as in the increase in the distance from the eye of the spectator.

On natural perspective (107—109).

107

OF EQUAL OBJECTS THE MOST REMOTE LOOK THE SMALLEST.

The practice of perspective may be divided into … parts [Footnote 4: inparte. The space for the number is left blank in the original.], of which the first treats of objects seen by the eye at any distance; and it shows all these objects just as the eye sees them diminished, without obliging a man to stand in one place rather than another so long as the plane does not produce a second foreshortening.

But the second practice is a combination of perspective derived partly from art and partly from nature and the work done by its rules is in every portion of it, influenced by natural perspective and artificial perspective. By natural perspective I mean that the plane on which this perspective is represented is a flat surface, and this plane, although it is parallel both in length and height, is forced to diminish in its remoter parts more than in its nearer ones. And this is proved by the first of what has been said above, and its diminution is natural. But artificial perspective, that is that which is devised by art, does the contrary; for objects equal in size increase on the plane where it is foreshortened in proportion as the eye is more natural and nearer to the plane, and as the part of the plane on which it is figured is farther from the eye.

And let this plane be d e on which are seen 3 equal circles which are beyond this plane d e, that is the circles a b c. Now you see that the eye h sees on the vertical plane the sections of the images, largest of those that are farthest and smallest of the nearest.

108

Here follows what is wanting in the margin at the foot on the other side of this page.

Natural perspective acts in a contrary way; for, at greater distances the object seen appears smaller, and at a smaller distance the object appears larger. But this said invention requires the spectator to stand with his eye at a small hole and then, at that small hole, it will be very plain. But since many (men's) eyes endeavour at the same time to see one and the same picture produced by this artifice only one can see clearly the effect of this perspective and all the others will see confusion. It is well therefore to avoid such complex perspective and hold to simple perspective which does not regard planes as foreshortened, but as much as possible in their proper form. This simple perspective, in which the plane intersects the pyramids by which the images are conveyed to the eye at an equal distance from the eye is our constant experience, from the curved form of the pupil of the eye on which the pyramids are intersected at an equal distance from the visual virtue.

[Footnote 24: la prima di sopra i. e. the first of the three diagrams which, in the original MS., are placed in the margin at the beginning of this chapter.]

109

OF A MIXTURE OF NATURAL AND ARTIFICIAL PERSPECTIVE.

This diagram distinguishes natural from artificial perspective. But before proceeding any farther I will define what is natural and what is artificial perspective. Natural perspective says that the more remote of a series of objects of equal size will look the smaller, and conversely, the nearer will look the larger and the apparent size will diminish in proportion to the distance. But in artificial perspective when objects of unequal size are placed at various distances, the smallest is nearer to the eye than the largest and the greatest distance looks as though it were the least of all; and the cause of this is the plane on which the objects are represented; and which is at unequal distances from the eye throughout its length. And this diminution of the plane is natural, but the perspective shown upon it is artificial since it nowhere agrees with the true diminution of the said plane. Whence it follows, that when the eye is somewhat removed from the [station point of the] perspective that it has been gazing at, all the objects represented look monstrous, and this does not occur in natural perspective, which has been defined above. Let us say then, that the square a b c d figured above is foreshortened being seen by the eye situated in the centre of the side which is in front. But a mixture of artificial and natural perspective will be seen in this tetragon called el main [Footnote 20: el main is quite legibly written in the original; the meaning and derivation of the word are equally doubtful.], that is to say e f g h which must appear to the eye of the spectator to be equal to a b c d so long as the eye remains in its first position between c and d. And this will be seen to have a good effect, because the natural perspective of the plane will conceal the defects which would [otherwise] seem monstrous.

III.
Six books on Light and Shade

Linear Perspective cannot be immediately followed by either the "prospettiva de' perdimenti" or the "prospettiva de' colori" or the aerial perspective; since these branches of the subject presuppose a knowledge of the principles of Light and Shade. No apology, therefore, is here needed for placing these immediately after Linear Perspective.

We have various plans suggested by Leonardo for the arrangement of the mass of materials treating of this subject. Among these I have given the preference to a scheme propounded in No. III, because, in all probability, we have here a final and definite purpose expressed. Several authors have expressed it as their opinion that the Paris Manuscript C is a complete and finished treatise on Light and Shade. Certainly, the Principles of Light and Shade form by far the larger portion of this MS. which consists of two separate parts; still, the materials are far from being finally arranged. It is also evident that he here investigates the subject from the point of view of the Physicist rather than from that of the Painter.

The plan of a scheme of arrangement suggested in No. III and adopted by me has been strictly adhered to for the first four Books. For the three last, however, few materials have come down to us; and it must be admitted that these three Books would find a far more appropriate place in a work on Physics than in a treatise on Painting. For this reason I have collected in Book V all the chapters on Reflections, and in Book VI I have put together and arranged all the sections of MS. C that belong to the book on Painting, so far as they relate to Light and Shade, while the sections of the same MS. which treat of the "Prospettiva de' perdimenti" have, of course, been excluded from the series on Light and Shade.

[Footnote III: This text has already been published with some slight variations in Dozio's pamphlet Degli scritti e disegni di Leonardo da Vinci, Milan 1871, pp. 30—31. Dozio did not transcribe it from the original MS. which seems to have remained unknown to him, but from an old copy (MS. H. 227 in the Ambrosian Library).]

GENERAL INTRODUCTION.

Prolegomena.

110

You must first explain the theory and then the practice. First you must describe the shadows and lights on opaque objects, and then on transparent bodies.

Scheme of the books on Light and shade.

111

INTRODUCTION.

[Having already treated of the nature of shadows and the way in which they are cast [Footnote 2: Avendo io tractato.—We may suppose that he here refers to some particular MS., possibly Paris C.], I will now consider the places on which they fall; and their curvature, obliquity, flatness or, in short, any character I may be able to detect in them.]

Shadow is the obstruction of light. Shadows appear to me to be of supreme importance in perspective, because, without them opaque and solid bodies will be ill defined; that which is contained within their outlines and their boundaries themselves will be ill-understood unless they are shown against a background of a different tone from themselves. And therefore in my first proposition concerning shadow I state that every opaque body is surrounded and its whole surface enveloped in shadow and light. And on this proposition I build up the first Book. Besides this, shadows have in themselves various degrees of darkness, because they are caused by the absence of a variable amount of the luminous rays; and these I call Primary shadows because they are the first, and inseparable from the object to which they belong. And on this I will found my second Book. From these primary shadows there result certain shaded rays which are diffused through the atmosphere and these vary in character according to that of the primary shadows whence they are derived. I shall therefore call these shadows Derived shadows because they are produced by other shadows; and the third Book will treat of these. Again these derived shadows, where they are intercepted by various objects, produce effects as various as the places where they are cast and of this I will treat in the fourth Book. And since all round the derived shadows, where the derived shadows are intercepted, there is always a space where the light falls and by reflected dispersion is thrown back towards its cause, it meets the original shadow and mingles with it and modifies it somewhat in its nature; and on this I will compose my fifth Book. Besides this, in the sixth Book I will investigate the many and various diversities of reflections resulting from these rays which will modify the original [shadow] by [imparting] some of the various colours from the different objects whence these reflected rays are derived. Again, the seventh Book will treat of the various distances that may exist between the spot where the reflected rays fall and that where they originate, and the various shades of colour which they will acquire in falling on opaque bodies.

Different principles and plans of treatment (112—116).

112

First I will treat of light falling through windows which I will call Restricted [Light] and then I will treat of light in the open country, to which I will give the name of diffused Light. Then I will treat of the light of luminous bodies.

113

OF PAINTING.

The conditions of shadow and light [as seen] by the eye are 3. Of these the first is when the eye and the light are on the same side of the object seen; the 2nd is when the eye is in front of the object and the light is behind it. The 3rd is when the eye is in front of the object and the light is on one side, in such a way as that a line drawn from the object to the eye and one from the object to the light should form a right angle where they meet.

114

OF PAINTING.

This is another section: that is, of the nature of a reflection (from) an object placed between the eye and the light under various aspects.

115

OF PAINTING.

As regards all visible objects 3 things must be considered. These are the position of the eye which sees: that of the object seen [with regard] to the light, and the position of the light which illuminates the object, b is the eye, a the object seen, c the light, a is the eye, b the illuminating body, c is the illuminated object.

116

Let a be the light, b the eye, c the object seen by the eye and in the light. These show, first, the eye between the light and the body; the 2nd, the light between the eye and the body; the 3rd the body between the eye and the light, a is the eye, b the illuminated object, c the light.

117

OF PAINTING.

OF THE THREE KINDS OF LIGHT THAT ILLUMINATE OPAQUE BODIES.

The first kind of Light which may illuminate opaque bodies is called Direct light—as that of the sun or any other light from a window or flame. The second is Diffused [universal] light, such as we see in cloudy weather or in mist and the like. The 3rd is Subdued light, that is when the sun is entirely below the horizon, either in the evening or morning.

118

OF LIGHT.

The lights which may illuminate opaque bodies are of 4 kinds. These are: diffused light as that of the atmosphere, within our horizon. And Direct, as that of the sun, or of a window or door or other opening. The third is Reflected light; and there is a 4th which is that which passes through [semi] transparent bodies, as linen or paper or the like, but not transparent like glass, or crystal, or other diaphanous bodies, which produce the same effect as though nothing intervened between the shaded object and the light that falls upon it; and this we will discuss fully in our discourse.

Definition of the nature of shadows (119—122).

119

WHAT LIGHT AND SHADOW ARE.

Shadow is the absence of light, merely the obstruction of the luminous rays by an opaque body. Shadow is of the nature of darkness. Light [on an object] is of the nature of a luminous body; one conceals and the other reveals. They are always associated and inseparable from all objects. But shadow is a more powerful agent than light, for it can impede and entirely deprive bodies of their light, while light can never entirely expel shadow from a body, that is from an opaque body.

120

Shadow is the diminution of light by the intervention of an opaque body. Shadow is the counterpart of the luminous rays which are cut off by an opaque body.

This is proved because the shadow cast is the same in shape and size as the luminous rays were which are transformed into a shadow.

121

Shadow is the diminution alike of light and of darkness, and stands between darkness and light.

A shadow may be infinitely dark, and also of infinite degrees of absence of darkness.

The beginnings and ends of shadow lie between the light and darkness and may be infinitely diminished and infinitely increased. Shadow is the means by which bodies display their form.

The forms of bodies could not be understood in detail but for shadow.

122

OF THE NATURE OF SHADOW.

Shadow partakes of the nature of universal matter. All such matters are more powerful in their beginning and grow weaker towards the end, I say at the beginning, whatever their form or condition may be and whether visible or invisible. And it is not from small beginnings that they grow to a great size in time; as it might be a great oak which has a feeble beginning from a small acorn. Yet I may say that the oak is most powerful at its beginning, that is where it springs from the earth, which is where it is largest (To return:) Darkness, then, is the strongest degree of shadow and light is its least. Therefore, O Painter, make your shadow darkest close to the object that casts it, and make the end of it fading into light, seeming to have no end.

Of the various kinds of shadows. (123-125).

123

Darkness is absence of light. Shadow is diminution of light. Primitive shadow is that which is inseparable from a body not in the light. Derived shadow is that which is disengaged from a body in shadow and pervades the air. A cast transparent shadow is that which is surrounded by an illuminated surface. A simple shadow is one which receives no light from the luminous body which causes it. A simple shadow begins within the line which starts from the edge of the luminous body a b.

124

A simple shadow is one where no light at all interferes with it.

A compound shadow is one which is somewhat illuminated by one or more lights.

125

WHAT IS THE DIFFERENCE BETWEEN A SHADOW THAT IS INSEPARABLE FROM A BODY AND A CAST SHADOW?

An inseparable shadow is that which is never absent from the illuminated body. As, for instance a ball, which so long as it is in the light always has one side in shadow which never leaves it for any movement or change of position in the ball. A separate shadow may be and may not be produced by the body itself. Suppose the ball to be one braccia distant from a wall with a light on the opposite side of it; this light will throw upon the wall exactly as broad a shadow as is to be seen on the side of the ball that is turned towards the wall. That portion of the cast shadow will not be visible when the light is below the ball and the shadow is thrown up towards the sky and finding no obstruction on its way is lost.

126

HOW THERE ARE 2 KINDS OF LIGHT, ONE SEPARABLE FROM, AND THE OTHER INSEPARABLE FROM BODIES.

Of the various kinds of light (126, 127).

Separate light is that which falls upon the body. Inseparable light is the side of the body that is illuminated by that light. One is called primary, the other derived. And, in the same way there are two kinds of shadow:—One primary and the other derived. The primary is that which is inseparable from the body, the derived is that which proceeds from the body conveying to the surface of the wall the form of the body causing it.

127

How there are 2 different kinds of light; one being called diffused, the other restricted. The diffused is that which freely illuminates objects. The restricted is that which being admitted through an opening or window illuminates them on that side only.

[Footnote: At the spot marked A in the first diagram Leonardo wrote lume costretto (restricted light). At the spot B on the second diagram he wrote lume libero (diffused light).]

General remarks (128. 129).

128

Light is the chaser away of darkness. Shade is the obstruction of light. Primary light is that which falls on objects and causes light and shade. And derived lights are those portions of a body which are illuminated by the primary light. A primary shadow is that side of a body on which the light cannot fall.

The general distribution of shadow and light is that sum total of the rays thrown off by a shaded or illuminated body passing through the air without any interference and the spot which intercepts and cuts off the distribution of the dark and light rays.

And the eye can best distinguish the forms of objects when it is placed between the shaded and the illuminated parts.

Возрастное ограничение:
0+
Дата выхода на Литрес:
26 июля 2019
Объем:
860 стр. 1 иллюстрация
Переводчик:
Правообладатель:
Public Domain
Формат скачивания:
epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip

С этой книгой читают

Новинка
Черновик
4,9
176